Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3334-3350    DOI: 10.1016/j.jia.2024.03.031
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress

Dili Lai1, 2*, Md. Nurul Huda2*, Yawen Xiao2, Tanzim Jahan2, Wei Li2, Yuqi He2, Kaixuan Zhang2, Jianping Cheng1, Jingjun Ruan1#, Meiliang Zhou2#

1 College of Agriculture, Guizhou University, Guiyang 550025, China

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 Highlights 
● 140 sugar transporters identified in Tartary buckwheat, grouped into 10 subfamilies.
FtERD23 enhances drought tolerance via glucose transport to maintain osmotic pressure.
Six transcription factors linked to FtERD23 regulation discovered for drought resistance.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
干旱正在成为作物生产的常见威胁。为了应对这种压力并确保全球粮食安全,鉴定和利用优异的抗旱基因对于开发抗旱作物品种至关重要。然而,目前已知糖转运体参与了许多植物的抗逆性,但是苦荞麦的糖转运体基因家族尚未得到系统分析。本研究从品苦基因组中鉴定了140个糖转运体基因,并将其分为10个亚族。结构分析表明,与其他亚家族相比,SGB/pGlcT亚家族内含子数量最多。启动子区域存在丰富的非生物胁迫相关顺式作用元件。共线性分析表明,FtSUT7FtSTP28FtPLT1FtINT2基因的相对较为古老。对各种非生物胁迫下糖转运基因的表达进行了筛选,结果表明FtERD23FtINT2FtpGlcT2FtSTP27可能与苦荞抗逆性有关。此外,还观察到FtERD23的过表达也许是通过葡萄糖转运维持渗透压,从而增强干旱胁迫耐受性。此外,利用WGCNA和FCMA进行的基因共表达分析发现了六个可能调控FtERD23表达并参与植物抗旱的转录因子。总之,这一系统分析为进一步确定糖转运体基因的功能特性以提高苦荞麦及其相关物种的耐旱性提供了理论依据。


Abstract  

Drought is becoming a common threat to crop production.  Identifying and utilizing excellent drought-resistant genes is crucial to combating this stress and ensuring global food security by developing drought-resistant crop varieties.  Although sugar transporters are involved in stress tolerance in many plants, the sugar transporter gene family of Tartary buckwheat has yet to be systematically analyzed.  This study identified 140 sugar transporter genes from the ‘Pinku’ Tartary buckwheat genome and classified them into 10 subfamilies.  Structural analysis showed that subfamily SGB/pGlcT had the highest number of introns compared to other subfamilies, and abundant abiotic stress-related cis-acting elements existed in the promoter region.  Collinear analysis revealed relatively ancient genes FtSUT7, FtSTP28, FtPLT1, and FtINT2.  The expression of sugar transporter genes was screened under various abiotic stresses, which revealed the association of stress tolerance with different sugar transporter genes, i.e., FtERD23, FtINT2, FtpGlcT2, and FtSTP27.  Further, we observed that the overexpression of FtERD23 maintains osmotic pressure through glucose transport, which may enhance drought stress tolerance.  Moreover, gene co-expression analyses using weighted gene co-expression network analysis (WGCNA) and fuzzy c-means algorithm (FCMA) identified six transcription factors that may regulate FtERD23 expression and are involved in plant drought tolerance.  Our systematic analysis provides a theoretical basis for the further functional characterization of sugar transporter genes to improve drought tolerance in Tartary buckwheat and its related species.

Keywords:  Tartary buckwheat       drought tolerance        sugar transporter  
Received: 14 November 2023   Online: 06 March 2024   Accepted: 23 January 2024
Fund: 
This research was supported by the Youth Innovation Program of the Chinese Academy of Agricultural Sciences (Y2022QC02), the National Natural Science Foundation of China (32161143005 and 32111540258), the European Union Horizon 2020 Project Planta SYST (SGA-CSA No. 739582 under FPA No. 664620), and the Science and Technology Project of the Hebei Education Department, China (BJ2019022).  
About author:  #Correspondence Meiliang Zhou, E-mail: zhoumeiliang@caas.cn; Jingjun Ruan, E-mail: 523131814@qq.com * These authors contributed equally to this study.

Cite this article: 

Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. 2025. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress. Journal of Integrative Agriculture, 24(9): 3334-3350.

Bavnhoj L, Paulsen P A, Flores-Canales J C, Schiott B, Pedersen B P. 2021. Molecular mechanism of sugar transport in plants unveiled by structures of glucose/Hsymporter STP10. Nature Plants7, 1409–1419.

Buttner M. 2007. The monosaccharide transporter(-like) gene family in ArabidopsisFEBS Letters581, 2318–2324.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen H Y, Huh J H, Yu Y C, Ho L H, Chen L Q, Tholl D, Frommer W B, Guo W J. 2015. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. The Plant Journal83, 1046–1058.

Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature468, 527–532.

Chen Q, Hu T, Li X, Song C P, Zhu J K, Chen L, Zhao Y. 2021. Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nature Plants8, 68–77.

Cheng R, Cheng Y, Lü J, Chen J, Wang Y, Zhang S, Zhang H. 2018. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiologia Plantarum164, 307–319.

Chorev M, Carmel L. 2012. The function of introns. Frontiers in Genetics3, 55.

Christian J I, Basara J B, Hunt E D, Otkin J A, Furtado J C, Mishra V, Xiao X, Randall R M. 2021. Global distribution, trends, and drivers of flash drought occurrence. Nature Communications12, 6330.

David W W, Anne F V L. 2023. Droughts are coming on faster. Science380, 130–132.

Deng X, An B, Zhong H, Yang J, Kong W, Li Y. 2019. A novel insight into functional divergence of the MST gene family in rice based on comprehensive expression patterns. Genes10, 239.

Doidy J, Grace E, Kuhn C, Simon-Plas F, Casieri L, Wipf D. 2012. Sugar transporters in plants and in their interactions with fungi. Trends in Plant Science17, 413–422.

Du L, Huang X, Ding L, Wang Z, Tang D, Chen B, Ao L, Liu Y, Kang Z, Mao H. 2022. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytologist237, 232–250.

Duan G L, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen B P, Daus B, Liu Z, Zhu Y G. 2015. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants2, 15202.

Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology25, 53–62.

Eom J S, Cho J I, Reinders A, Lee S W, Yoo Y, Tuan P Q, Choi S B, Bang G, Park Y I, Cho M H, Bhoo S H, An G, Hahn T R, Ward J M, Jeon J S. 2011. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiology157, 109–119.

Fang T, Rao Y, Wang M, Li Y, Liu Y, Xiong P, Zeng L. 2022. Characterization of the SWEET gene family in longan (Dimocarpus longan) and the role of DlSWEET1 in cold tolerance. International Journal of Molecular Sciences23, 8914.

Fang Y, Wang D, Xiao L, Quan M, Qi W, Song F, Zhou J, Liu X, Qin S, Du Q, Liu Q, El-Kassaby Y A, Zhang D. 2023. Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in PopulusPlant Physiology193, 736–755.

Flütsch S, Nigro A, Conci F, Fajkus J, Thalmann M, Trtílek M, Panzarová K, Santelia D. 2020. Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. EMBO Reports21, e49719.

He M, He Y, Zhang K, Lu X, Zhang X, Gao B, Fan Y, Zhao H, Jha R, Huda M N, Tang Y, Wang J, Yang W, Yan M, Cheng J, Ruan J, Dulloo E, Zhang Z, Georgiev M I, Chapman M A, et al. 2022. Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytologist235, 1927–1943.

Holub E B. 2001. The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetics2, 516–527.

Hu Z, Tang Z, Zhang Y, Niu L, Yang F, Zhang D, Hu Y. 2021. Rice SUT and SWEET transporters. International Journal of Molecular Sciences22, 11198.

Huai B, Yang Q, Qian Y, Qian W, Kang Z, Liu J. 2019. ABA-induced sugar transporter TaSTP6 promotes wheat susceptibility to stripe rust. Plant Physiology181, 1328–1343.

Huai B, Yuan P, Ma X, Zhang X, Jiang L, Zheng P, Yao M, Chen Z, Chen L, Shen Q, Kang Z, Liu J. 2022. Sugar transporter TaSTP3 activation by TaWRKY19/61/82 enhances stripe rust susceptibility in wheat. New Phytologist236, 266–282.

Huang J, Chen Q, Rong Y, Tang B, Zhu L, Ren R, Shi T, Chen Q. 2021. Transcriptome analysis revealed gene regulatory network involved in PEG-induced drought stress in Tartary buckwheat (Fagopyrum Tararicum). PeerJ9, e11136.

Huang W, Hu B, Liu J, Zhou Y, Liu S. 2020. Identification and characterization of tonoplast sugar transporter (TST) gene family in cucumber. Horticultural Plant Journal6, 145–157.

Huda M N, Lu S, Jahan T, Ding M, Jha R, Zhang K, Zhang W, Georgiev M I, Park S U, Zhou M. 2021. Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry335, 127653.

Irigoyen S, Karlsson P M, Kuruvilla J, Spetea C, Versaw W K. 2011. The sink-specific plastidic phosphate transporter PHT4;2 influences starch accumulation and leaf size in ArabidopsisPlant Physiology157, 1765–1777.

Jeena G S, Kumar S, Shukla R K. 2019. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. Plant Molecular Biology100, 351–365.

Jo B S, Choi S S. 2015. Introns: The functional benefits of introns in genomes. Genomics & Informatics13, 112–118.

Johnson D A, Hill J P, Thomas M A. 2006. The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages. BMC Ecology and Evolution6, 64.

Julius B T, Leach K A, Tran T M, Mertz R A, Braun D M. 2017. Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology58, 1442–1460.

Klemens P A, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in ArabidopsisPlant Physiology163, 1338–1352.

Klemens P A W, Patzke K, Trentmann O, Poschet G, Buttner M, Schulz A, Marten I, Hedrich R, Neuhaus H E. 2014. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. New Phytologist202, 188–197.

Kuhn C, Grof C P. 2010. Sucrose transporters of higher plants. Current Opinion in Plant Biology13, 288–298.

Li Y, Han S, Sun X, Khan N U, Zhong Q, Zhang Z, Zhang H, Ming F, Li Z, Li J. 2023. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice. Journal of Integrative Plant Biology65, 918–933.

Ma Q J, Sun M H, Lu J, Kang H, You C X, Hao Y J. 2019. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnology Journal17, 625–637.

Mishra D, Shekhar S, Chakraborty S, Chakraborty N. 2021. Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. The Plant Journal105, 1374–1389.

Miyazaki M, Araki M, Okamura K, Ishibashi Y, Yuasa T, Iwaya-Inoue M. 2013. Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. Journal of Plant Physiology170, 1579–1584.

Mohammadi K, Jiang Y, Wang G. 2020. Flash drought early warning based on the trajectory of solar-induced chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America119, e2202767119.

Monfared H H, Chew J K, Azizi P, Xue G P, Ee S F, Kadkhodaei S, Hedayati P, Ismail I, Zainal Z. 2020. Overexpression of a rice monosaccharide transporter gene (OsMST6) confers enhanced tolerance to drought and salinity stress in Arabidopsis thalianaPlant Molecular Biology Reporter38, 151–164.

Panchy N, Lehti-Shiu M, Shiu S H. 2016. Evolution of gene duplication in plants. Plant Physiology171, 2294–2316.

Patzke K, Prananingrum P, Klemens P A W, Trentmann O, Rodrigues C M, Keller I, Fernie A R, Geigenberger P, Bölter B, Lehmann M, Schmitz-Esser S, Pommerrenig B, Haferkamp I, Neuhaus H E. 2019. The plastidic sugar transporter pSuT influences flowering and affects cold responses. Plant Physiology179, 569–587.

Peng Q, Cai Y, Lai E, Nakamura M, Liao L, Zheng B, Ogutu C, Cherono S, Han Y. 2020. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biology20, 191.

Poschet G, Hannich B, Raab S, Jungkunz I, Klemens P A, Krueger S, Wic S, Neuhaus H E, Buttner M. 2011. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiology157, 1664–1676.

Reinders A, Sivitz A B, Ward J M. 2012. Evolution of plant sucrose uptake transporters. Frontiers in Plant Science3, 22.

Rottmann T, Klebl F, Schneider S, Kischka D, Rüscher D, Sauer N, Stadler R. 2018. Sugar transporter STP7 specificity for l-Arabinose and d-Xylose contrasts with the typical hexose transporters STP8 and STP12. Plant Physiology176, 2330–2350.

Roy S W, Gilbert W. 2006. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nature Reviews Genetics7, 211–221.

Seleiman M F, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid H H, Battaglia M L. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants10, 259.

Shabalina S A, Ogurtsov A Y, Spiridonov A N, Novichkov P S, Spiridonov N A, Koonin E V. 2010. Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes. Molecular Biology and Evolution27, 1745–1749.

Sivitz A B, Reinders A, Ward J M. 2008. Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiology147, 92–100.

Slawinski L, Israel A, Artault C, Thibault F, Atanassova R, Laloi M, Dedaldechamp F. 2021a. Responsiveness of early response to dehydration six-like transporter genes to water deficit in Arabidopsis thaliana leaves. Frontiers in Plant Science12, 708876.

Slawinski L, Israel A, Paillot C, Thibault F, Cordaux R, Atanassova R, Dedaldechamp F, Laloi M. 2021b. Early response to dehydration six-like transporter family: Early origin in streptophytes and evolution in land plants. Frontiers in Plant Science12, 681929.

Slewinski T L. 2011. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: A physiological perspective. Molecular Plant4, 641–662.

Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics47, 1489–1493.

Sun W, Jin X, Ma Z, Chen H, Liu M. 2020. Basic helix–loop–helix (bHLH) gene family in Tartary buckwheat (Fagopyrum tataricum): Genome-wide identification, phylogeny, evolutionary expansion and expression analyses. International Journal of Biological Macromolecules155, 1478–1490.

Sun X, Xiong H, Jiang C, Zhang D, Yang Z, Huang Y, Zhu W, Ma S, Duan J, Wang X, Liu W, Guo H, Li G, Qi J, Liang C, Zhang Z, Li J, Zhang H, Han L, Zhou Y, et al. 2022. Natural variation of DROT1 confers drought adaptation in upland rice. Nature Communications13, 4265.

Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue B P. 2015. The plant peptidome: An expanding repertoire of atructural features and biological functions. The Plant Cell27, 2095–2118.

Valifard M, Le Hir R, Müller J, Scheuring D, Neuhaus H E, Pommerrenig B. 2021. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance. Plant Physiology187, 2716–2730.

Wang H, Feng M, Jiang Y, Du D, Dong C, Zhang Z, Wang W, Liu J, Liu X, Li S, Chen Y, Guo W, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Liu J. 2023. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. The Plant Cell35, 3889–3910.

Wang J, Xue X, Zeng H, Li J, Chen L Q. 2022. Sucrose rather than GA transported by AtSWEET13 and AtSWEET14 supports pollen fitness at late anther development stages. New Phytologist236, 525–537.

Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus H E. 2006. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. The Plant Cell18, 3476–3490.

Wu Y, Ma L, Liu Q, Topalovic O, Wang Q, Yang X, Feng Y. 2020. Pseudomonas fluorescens accelerates a reverse and long-distance transport of cadmium and sucrose in the hyperaccumulator plant Sedum alfrediiChemosphere256, 127156.

Wu Y, Peng W, Xiong F. 2019. Sucrose transport involves in disease response to Xanthomonas oryzae pathovar oryzaePlant Signaling & Behavior14, 1656949.

Xiao Q L, Li Z, Wang Y Y, Hou X B, Wei X M, Zhao X, Huang L, Guo Y J, Liu Z Z. 2022. Genome-wide identification, expression and functional analysis of sugar transporters in sorghum (Sorghum bicolor L.). Journal of Integrative Agriculture21, 2848–2864.

Xiong D, Ling X, Huang J, Peng S. 2017. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environmental and Experimental Botany141, 1–9.

Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. 2010. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. Journal of Biological Chemistry285, 1138–1146.

Yang Z R, Cao Y B, Shi Y T, Qin F, Jiang C F, Yang S Y. 2023. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture. Molecular Plant16, 1496–1517.

Yuan X, Wang Y, Ji P, Wu P, Sheffield J, Otkin J. 2023. A global transition to flash droughts under climate change. Science380, 187–191.

Zhang K, He Y, Lu X, Shi Y, Zhao H, Li X, Li J, Liu Y, Ouyang Y, Tang Y, Ren X, Zhang X, Yang W, Sun Z, Zhang C, Quinet M, Luthar Z, Germ M, Kreft I, Janovská D, et al. 2023. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility. Molecular Plant16, 1427–1444.

Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H, Ma M, Liu L, Zhou J, Nan C, Qin Y, Wang J, Cui L, Liu H, Liang C, et al. 2017. The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant10, 1224–1237.

Zhang T, Zhang W, Ding C, Hu Z, Fan C, Zhang J, Li Z, Diao S, Shen L, Zhang B, Liu G, Su X. 2023. A breeding strategy for improving drought and salt tolerance of poplar based on CRISPR/Cas9. Plant Biotechnology Journal21, 2160–2162.

Zhang X, Li X, Zhao R, Zhou Y, Jiao Y. 2020. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. New Phytologist226, 1506–1516.

Zhu J, Zhou L, Li T, Ruan Y, Zhang A, Dong X, Zhu Y, Li C, Fan J. 2022. Genome-wide investigation and characterization of SWEET gene family with focus on their evolution and expression during hormone and abiotic stress response in maize. Genes (Basel), 13, 1682.

Zhu L, Li B, Wu L, Li H, Wang Z, Wei X, Ma B, Zhang Y, Ma F, Ruan Y L, Li M. 2021. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proceedings of the National Academy of Sciences of the United States of America118, e2022788118.

Zhu L, Li Y, Wang C, Wang Z, Cao W, Su J, Peng Y, Li B, Ma B, Ma F, Ruan Y L, Li M. 2023. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. Nature Plants9, 951–964.

[1] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[2] HU Ling-yu, YUE Hong, ZHANG Jing-yun, LI Yang-tian-su, GONG Xiao-qing, ZHOU Kun, MA Feng-wang. Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1968-1981.
[3] LI Jun, WANG Hui, LU Yang, MAO Tang-fen, XIONG Jiang, HE Sheng-ling, LIU Hui . Inhibitory effect of tartary buckwheat seedling extracts and associated flavonoid compounds on the polyphenol oxidase activity in potatoes (Solanum tuberosum L.)[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2173-2182.
No Suggested Reading articles found!