Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (9): 3351-3367    DOI: 10.1016/j.jia.2024.04.005
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes

Yunji Xu1, 2, 3, Xuelian Weng1, 2, 3, Shupeng Tang1, Weiyang Zhang2, Kuanyu Zhu2, Guanglong Zhu1, 2, 3, Hao Zhang2, Zhiqin Wang2, Jianchang Yang1, 2#

1 Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

3 Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China

 Highlights 
● The 55 lipid subclasses consisting of 1,086 lipid molecular species were identified in milled rice.
● Lipidome changes in milled rice were closely associated with rice cooking and eating quality.  
The 10 lipid molecular species altered by the alternate wetting and moderate soil drying irrigation (AWMD) and alternate wetting and severe soil drying irrigation (AWSD) regimes were preferentially used for investigating their relationship with rice grain quality.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
干湿交替灌溉技术(AWD)对稻米品质形成具有重要影响。脂质作为水稻籽粒中除淀粉和蛋白质以外的第三大丰富的物质成分,与籽粒品质形成密切相关。但是,不同AWD模式下稻米脂质谱的变化特点仍不清楚。本研究设置了常规灌溉(CI)、轻-干湿交替灌溉(AWMD)和重干-湿交替灌溉(AWSD)3种灌溉处理,采用非靶向脂质组学分析方法研究了扬稻6号(YD6)精米中脂质组的变化特点,并分析了稻米的蒸煮食味品质。结果显示,YD6精米中具有7种脂类、55种脂质亚类,共包含1086个脂质分子。与CI处理相比,AWMD处理主要改变了精米中TG、Cer、DG、BisMePA、PC、PE、MGDG和DGDG等脂质亚类,提高了稻米的蒸煮食味品质,而AWSD处理显著改变了TG、Cer、DG、PC、PE、Hex1Cer、DGDG和BisMePA等脂质亚类,并降低了稻米的蒸煮食味品质。研究进一步发现,AWMD处理对DGDG(18:0_18:2)、DGDG(16:0_14:0)、PC(33:1)、Cer(t17:0_26:0)和Cer(t17:0_16:0)等脂质分子表达的影响最为显著,而AWSD处理对TG(6:0_14:0_18:3)、PC(41:1)、TG(19:1_18:4_18:4)、Hex1Cer(d18:2_24:0+O)和Hex1Cer(d18:2_24:1)等脂质分子表达的影响最为明显。综上,由AWMD和AWSD处理引起改变的上述10种脂质分子可优先作为脂质与稻米品质关系研究的候选脂质。


Abstract  

Alternate wetting and soil drying irrigation (AWD) technique is crucial in influencing grain quality in rice (Oryza sativa L.).  Lipids are the third most abundant constituents in rice grains, after starch and proteins, and are closely related to grain quality.  However, it remains unclear about the changes in lipids profiling under different AWD regimes.  This study set up three irrigation regimes including conventional irrigation (CI), alternate wetting and moderate soil drying irrigation (AWMD), and alternate wetting and severe soil drying irrigation (AWSD).  It explored lipidome changes in milled rice of Yangdao 6 (YD6) using the untargeted lipidomics approach and analyzed rice cooking and eating quality.  The results identified seven lipid classes, 55 lipid subclasses, and 1,086 lipid molecular species.  Compared with the CI regime, the AWMD regime mainly altered lipid subclasses consisting of triglyceride (TG), ceramide (Cer), diglyceride (DG), bis-methyl lysophosphatidic acid (BisMePA), phosphocholine (PC), phosphoethanolamine (PE), monogalactosyldiacylglycerol (MGDG), and digalactosyl diglyceride (DGDG) in milled rice and improved cooking and eating quality of rice; in contrast, the AWSD regime distinctly changed lipid subclasses like TG, Cer, DG, PC, PE, hexosylceramide (Hex1Cer), DGDG, and BisMePA and degraded cooking and eating quality of rice.  Specifically, AWMD most significantly altered the expressions of lipid molecules, including DGDG(18:0_18:2), DGDG(16:0_14:0), PC(33:1), Cer(t17:0_26:0), and Cer(t17:0_16:0); AWSD most obviously influenced the expressions of TG(6:0_14:0_18:3), PC(41:1), TG(19:1_18:4_18:4), Hex1Cer(d18:2_24:0+O), and Hex1Cer(d18:2_24:1).  These 10 altered lipid molecules in milled rice can be preferentially used for investigating their relationships with grain quality in rice. 


Keywords:  rice (Oryza sativa L.)       untargeted lipidomics analysis        alternate wetting and soil drying irrigation        milled rice        cooking and eating quality  
Received: 23 October 2023   Online: 10 April 2024   Accepted: 14 March 2024
Fund: This work was supported by the Natural Science Foundation of Jiangsu Province, China (BK20241931 and BK20221371), the National Natural Science Foundation of China (32071943 and 32372214), and the National Key Research and Development Program of China (2022YFD2300304).
About author:  #Correspondence Jianchang Yang, Tel/Fax: +86-514-87979317, E-mail: jcyang@yzu.edu.cn

Cite this article: 

Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. 2025. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes. Journal of Integrative Agriculture, 24(9): 3351-3367.

Alauddin M, Sarker M A R, Islam Z, Tisdell C. 2020. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use Policy91, 104430.

Azudin M N, Morrison W R. 1986. Non-starch lipids and starch lipids in milled rice. Journal of Cereal Science4, 23–31.

Buffagni V, Zhang L L, Senizza B, Rocchetti G, Ferrarini A, Miras-Moreno B, Lucini L. 2022. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions. Plant Science322, 111346.

Cajka T, Fiehn O. 2014. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends in Analytical Chemistry61, 192–206.

Carlsson H, Vaivade A, Khoonsari P E, Burman J, Kultima K. 2022. Evaluation of polarity switching for untargeted lipidomics using liquid chromatography coupled to high resolution mass spectrometry. Journal of Chromatography B1195, 123200.

Chen G Y, Peng L G, Li C M, Tu Y B, Lan Y, Wu C Y, Duan Q, Zhang Q Q, Yang H, Li T. 2023. Effects of potassium application rate on lipid synthesis and eating quality of two rice cultivars. Journal of Integrative Agriculture22, 2025–2040.

Chen Y H, Jia L, Li J. 2017. Plant Biochemistry. Higher Education Press, China. (in Chinese)

Concepcion J C, Calingacion M, Garson M J, Fitzgerald M A. 2020. Lipidomics reveals associations between rice quality traits. Metabolomics16, 54.

Fu F B, Li F S, Kang S Z. 2017. Alternate partial root-zone drip irrigation improves water- and nitrogen-use efficiencies of sweet-waxy maize with nitrogen fertigation. Scientific Reports7, 17256.

Gao L, Jiang H F, Li M, Wang D F, Xiang H T, Zeng R, Chen LM, Zhang X Y, Zuo J R, Yang S H, Shi Y T. 2024. Genetic and lipidomic analyses reveal the key role of lipid metabolism for cold tolerance in maize. Journal of Genetics and Genomics5, 326–337.

Guo X Q, Wang L Q, Zhu G L, Xu Y J, Meng T Y, Zhang W Y, Li G H, Zhou G S. 2023. Impacts of inherent components and nitrogen fertilizer on eating and cooking quality of rice: A review. Foods12, 2495.

Harwood J L, Guschina I A. 2013. Regulation of lipid synthesis in oil crops. FEBS Letters587, 2079–2081.

Hu X Q, Fang C Y, Zhang W X, Lu L, Guo Z L, Li S M. 2023. Change in volatiles, soluble sugars and fatty acids of glutinous rice, japonica rice and indica rice during storage. LWT-Food Science and Technology174, 114416.

Huang S S, Zhang D, Wang Q, Shang B, Liu J L, Xing X T, Hong Y, Duan X L, Sun H. 2023. Shotgun lipidomics reveals the changes in phospholipids of brown rice during accelerated aging. Food Research International171, 113073.

Ishfaq M, Farooq M, Zulfiqar U, Hussain S, Akdeem A, Nawaz A, Anjum S A. 2020. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agricultural Water Management241, 106363.

Kaabia Z, Laparre J, Cesbron N, Le Bizec B, Dervilly-Pinel G. 2018. Comprehensive steroid profiling by liquid chromatography coupled to high resolution mass spectrometry. The Journal of Steroid Biochemistry and Molecular Biology183, 106–115.

Kaewmungkun K, Tongmark K, Chakhonkaen S, Sangarwut N, Wasinanon T, Panyawut N, Ditthab K, Sikaewtung K, Qi Y B, Dapha S. 2023. Development of new aromatic rice lines with high eating and cooking qualities. Journal of Integrative Agriculture22, 679–690.

Khatun A, Waters D L E, Liu L. 2022. The impact of rice lipid on in vitro rice starch digestibility. Foods11, 1528.

Li M, Zhou Z G, Nie H G, Bai Y, Liu H W. 2011. Recent advances of chromatography and mass spectrometry in lipidomics. Analytical and Bioanalytical Chemistry399, 243–249.

Liu L J, Li H W, Zhao B H, Wang Z Q, Yang J C. 2012. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chinese Journal of Rice Science26, 77–84. (in Chinese)

Muresan A R, Rahaman K A, Son J, Kang M J, Kwon O S. 2023. Metabolites identification of anabolic steroid bolasterone in vitro and in rats by high resolution liquid chromatography mass spectrometry. Drug Testing and Analysis15, 1329–1343.

Navarro-Reig M, Tauler R, Iriondo-Frias G, Jaumot J. 2019. Untargeted lipidomic evaluation of hydric and heat stresses on rice growth. Journal of Chromatography B1104, 148–156.

Norton G J, Shafaei M, Travis A J, Deacon C M, Danku J, Pond D, Cochrane N, Lockhart K, Salt D, Zhang H, Dodd I C, Hossain M, Islam M R, Price A H. 2017. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Research205, 1–13.

Park S G, Park H S, Baek M K, Jeong J M, Cho Y C, Lee G M, Lee C M, Suh J P, Kim C S, Kim S M. 2019. Improving the glossiness of cooked rice, an important component of visual rice grain quality. Rice12, 87.

Peng L G, Chen G Y, Tu Y B, Wang J, Lan Y, Hu M M, Li C M, He X M, Li T. 2022. Effects of phosphorus application rate on lipid synthesis and eating quality of two rice grains. Agriculture12, 667.

Ren C Y, Lu S W, Guan L J, Hong B, Zhang Y L, Huang W G, Li B, Liu W, Lu W H. 2022. The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice. Journal of Integrative Agriculture21, 2767–2776.

Resurreccion A P, Juliano B O. 1975. Fatty acid composition of rice oils. Journal of the Science of Food and Agriculture26, 437–439.

Rong L B, Gong K Y, Duan F Y, Li S K, Zhao M, He J Q, Zhou W B, Yu Q. 2021. Yield gap and resource utilization efficiency of three major food crops in the world - A review. Journal of Integrative Agriculture20, 349–362.

Seck P A, Diagne A, Mohanty S, Wopereis M C S. 2012. Crops that feed the world 7: Rice. Food Security4, 7–24.

Sidorov R A, Tsydendambaev V D. 2014. Biosynthesis of fatty oils in higher plants. Russian Journal of Plant Physiology61, 1–18.

Smirnov D, Mazin P, Osetrova M, Stekolshchikova E, Khrameeva E. 2021. The hitchhiker’s guide to untargeted lipidomics analysis: Practical guidelines. Metabolites11, 713.

Tang S P, Liu Y, Jian C Q, Xu Y J, Zhang W Y, Wang Z Q, Yang J C. 2022. Progress on effects of alternating wet and dry irrigation on use efficiency of water and nitrogen, yield and quality of rice. Journal of Huazhong Agricultural University41, 184–192. (in Chinese)

Wang J N, Wang C Y, Han X L. 2019. Tutorial on lipidomics. Analytica Chimica Acta1061, 28–41.

Wang Q Y, Han F, Wu Z D, Lan T Y, Wu W F. 2020. Estimation of free fatty acids in stored paddy rice using multiple-kernel support vector regression. Applied Sciences10, 6555.

Wolf C, Quinn P J. 2008. Lipidomics: Practical aspects and applications. Progress in Lipid Research47, 15–36.

Xu Y J, Gu D J, Li K, Zhang W Y, Zhang H, Wang Z Q, Yang J C. 2019. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice. Crop Science59, 1261–1272.

Yang J C, Huang D F, Duan H, Tan G L, Zhang J H. 2009. Alternate wetting and moderate soil drying increases grain yield and reduces cadmium accumulation in rice grains. Journal of the Science of Food and Agriculture89, 1728–1736.

Yoon M R, Lee S C, Kang M Y. 2012. The lipid composition of rice cultivars with different eating qualities. Journal of the Korean Society for Applied Biological Chemistry55, 291–295.

Yoshida H, Kuriyama I, Tomiyama-Sakamoto Y, Mizushina Y. 2012. Profiles of lipid components, fatty acids and triacylglycerol molecular species in lipids of rice bran cultivars. Food Science and Technology Research18, 219.

Zhang D, Zhao L Y, Wang W J, Wang Q, Liu J L, Wang Y Y, Liu H, Shang B, Duan X L, Sun H. 2022. Lipidomics reveals the changes in non-starch and starch lipids of rice (Oryza sativa L.) during storage. Journal of Food Composition and Analysis105, 104205.

Zhang H, Zhang S F, Yang J C, Zhang J H, Wang Z Q. 2008. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal100, 726–734.

Zhou L H, Zhang C Q, Zhang Y D, Wang C L, Liu Q Q. 2022. Genetic manipulation of endosperm amylose for designing superior quality rice to meet the demands in the 21st century. Journal of Cereal Science105, 103481.

Zhou Q, Ju C X, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. 2017. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. Journal of Integrative Agriculture16, 1028–1043.

Zhou Z K, Robards K, Helliwell S, Blanchard C. 2002. Composition and functional properties of rice. International Journal of Food Science and Technology37, 849–868.

No related articles found!
No Suggested Reading articles found!