Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (11): 4138-4152    DOI: 10.1016/j.jia.2024.03.027
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification and transfer of resistance to Fusarium head blight from Elymus repens chromosome arm 7StL into wheat

Fei Wang1, 2*, Xin Zhao1, 2*, Xianghai Yu1, 2, Wei Zhu1, 2, Lili Xu2, Yiran Cheng1, Yazhou Zhang1, 2, Yi Wang1, 2, Jian Zeng3, Xing Fan1, 2, Lina Sha4, Haiqin Zhang4, Yonghong Zhou1, 2, Dandan Wu1, 2#, Houyang Kang1, 2#

1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China

2 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China

3 College of Resources, Sichuan Agricultural University, Chengdu 611130, China

4 College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China

 Highlights 
Development and identification of a new wheat–Elymus repens 7DS·7StL translocation line with Fusarium head blight (FHB) resistance.
Elymus repens chromosome arm 7StL carries the dominant FHB resistance locus, preliminarily designated as QFhb.Er-7StL.
The 7DS·7StL translocation confers a significant enhancement of FHB resistance in wheat.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
小麦赤霉病(Fusarium head blight,FHB)主要是由禾谷镰孢菌(Fusarium graminearumFg)引起的一种严重危害小麦生产的真菌病害。偃麦草(Elymus repens, 2n=6x=42,StStStHH)是小麦的野生近缘种,具有许多抗生物和非生物胁迫的优良性状。为了将该野生种质的抗赤霉病基因转移并应用于小麦育种,我们从偃麦草与普通小麦杂交的衍生后代中鉴定了一个新的抗赤霉病易位系K140-7。通过基因组原位杂交(GISH)、非变性-荧光原位杂交(ND-FISH)、寡核苷酸-FISH涂染(Oligo-FISH painting)、单拷贝基因-FISH(single gene FISH)和小麦55K SNP芯片分析,发现K140-7是一个细胞遗传学稳定的7DS·7StL易位系,易位断点(340.8-342.5 Mb)靠近染色体7D的着丝粒区域(336.3-341.7 Mb)。基于二倍体拟鹅观草(Pseudoroegneria libanotica)St参考基因组,开发了21个7StL特异的简单序列重复(SSR)分子标记。在不同小麦背景中对7DS·7StL易位进行基因型和表型分析,表明外源片段7StL赋予了小麦赤霉病抗性且抗病性为显性,将该赤霉病抗性位点命名为QFhb.Er-7StL。进一步将该位点向三种遗传背景的小麦品种进行转移,创制了3份农艺性状更为优良的第二代7DS·7StL易位系,可用于小麦赤霉病抗性遗传改良。


Abstract  

Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive fungal diseases affecting global wheat production.  Elymus repens (2n=6×=42, StStStStHH), a wild relative of wheat, exhibits numerous biotic and abiotic stress resistance characteristics.  In previous studies, FHB resistance of E. repens has been transferred into common wheat through a wheat–E. repens partial amphidiploid and derivative lines.  This study reports the development, characterization, and breeding utilization of K140-7, a novel wheat–E. repens translocation line conferring resistance to FHB.  Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) analyses demonstrated that K140-7 contained 40 common wheat chromosomes and two 7D·St translocation chromosomes.  Subsequent characterization using oligonucleotide-FISH painting and single-gene FISH markers confirmed that the 7D fragment was a 7D short arm and the St fragment was a 7St long arm.  Therefore, K140-7 was further identified as a 7DS·7StL translocation line with genetic compensation.  Wheat 55K SNP array analysis of K140-7 demonstrated the 7DS·7StL translocation event.  Field evaluations demonstrated that K140-7 exhibits agronomic performance comparable to its wheat parent.  Based on St reference genome of Pseudoroegneria libanotica, 21 simple sequence repeats (SSR) markers specific to 7StL were developed.  Genetic analysis established that 7StL confers FHB resistance and carries the dominant FHB resistance locus, designated as QFhb.Er-7StL.  Introgression of QFhb.Er-7StL into elite wheat cultivars has generated three second-generation 7DS·7StL translocation lines with enhanced agronomic traits.  This study provides valuable novel germplasms and specific molecular markers for FHB resistance breeding in wheat.

Keywords:  Fusarium head blight (FHB)       Elymus repens       wheat       translocation line       breeding transfer  
Received: 01 November 2023   Accepted: 03 January 2024 Online: 06 March 2024  
Fund: This work was supported by the National Natural Science Foundation of China (31971883 and 32200180), the Major Program of National Agricultural Science and Technology of China (NK20220607), the Special Projects of the Central Government in Guidance of Local Science and Technology Development, China (2023ZYD0088), the Science and Technology Bureau of Sichuan Province, China (2021YFYZ0002, 2022ZDZX0014, 2023NSFSC1995, and 2022YFSY0035), and the Science and Technology Bureau of Chengdu City, China (2022-YF05-00449-SN).  
About author:  #Correspondence Houyang Kang, Tel: +86-28-86293067, E-mail: houyang.kang@sicau.edu.cn; Dandan Wu, Tel: +86-28-82650350, E-mail: wudandan@sicau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Fei Wang, Xin Zhao, Xianghai Yu, Wei Zhu, Lili Xu, Yiran Cheng, Yazhou Zhang, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Yonghong Zhou, Dandan Wu, Houyang Kang. 2025. Identification and transfer of resistance to Fusarium head blight from Elymus repens chromosome arm 7StL into wheat. Journal of Integrative Agriculture, 24(11): 4138-4152.

Bai G H, Su Z Q, Cai J. 2018. Wheat resistance to Fusarium head blight. Canadian Journal of Plant Pathology40, 336–346.

Bi Y F, Zhao Q Z, Yan W K, Li M X, Liu Y X, Cheng C Y, Zhang L, Yu X Q, Li J, Qian C T, Wu Y F, Cheng J F, Lou Q F. 2020. Flexible chromosome painting based on multiplex PCR of oligonucleotides and its application for comparative chromosome analyses in CucumisThe Plant Journal102, 178–186.

Buerstmayr M, Wagner C, Nosenko T, Omony J, Steiner B, Nussbaumer T, Mayer K F X, Buerstmayr H. 2021. Fusarium head blight resistance in European winter wheat: Insights from genome-wide transcriptome analysis. BMC Genomics22, 470.

Cainong J C, Bockus W W, Feng Y G, Chen P D, Qi L L, Sehgal S K, Danilova T V, Koo D H, Friebe B, Gill B S. 2015. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theoretical and Applied Genetics128, 1019–1027.

Chai Y, Senay S, Horvath D, Pardey P. 2022. Multi-peril pathogen risks to global wheat production: A probabilistic loss and investment assessment. Frontiers in Plant Science13, 1034600.

Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen N, Chen W J, Yan H, Wang Y, Kang H Y, Zhang H Q, Zhou Y H, Sun G L, Sha L N, Fan X. 2020. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Molecular Phylogenetics and Evolution149, 106838.

Cui L, Ren Y K, Murray T D, Yan W Z, Guo Q, Niu Y Q, Sun Y, Li H J. 2018. Development of perennial wheat through hybridization between wheat and wheatgrasses: A review. Engineering4, 507–513.

Czaban J, Wróblewska B, Sułek A, Mikos M, Boguszewska E, Podolska G, Nieróbca A. 2015. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions. Food Additives & Contaminants (Part A), 32, 874–910.

Danilova T V, Friebe B, Gill B S. 2014. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theoretical and Applied Genetics127, 715–730.

Dewey D R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson J P, ed., Gene Manipulation in Plant Improvement. Springer, Boston. pp. 209–279.

Du H M, Tang Z X, Duan Q, Tang S Y, Fu S L. 2018. Using the 6RLKu minichromosome of rye (Secale cereale L.) to create wheat–rye 6D/6RLKu small segment translocation lines with powdery mildew resistance. International Journal of Molecular Sciences19, 3933.

Du X, Feng X B, Li R X, Jin Y L, Shang L H, Zhao J X, Wang C Y, Li T D, Chen C H, Tian Z R, Deng P C, Ji W Q. 2022. Cytogenetic identification and molecular marker development of a novel wheat-Leymus mollis 4Ns(4D) alien disomic substitution line with resistance to stripe rust and Fusarium head blight. Frontiers in Plant Science13, 1012939.

Endo T R. 1979. Selective gametocidal action of a chromosome of Aegilops cylindrica in a cultivar of common wheat. Wheat Information Service50, 24–28.

Endo T R, Tsunewaki K. 1975. Sterility of common wheat with Aegilops triuncialis cytoplasm. Journal of Heredity66, 13–18.

Fedak G, Cao W, Wolfe D, Chi D, Xue A. 2017. Molecular characterization of Fusarium resistance from Elymus repens introgressed into bread wheat. Cytology and Genetics51, 130–133.

Gamache J, Sun G L. 2015. Phylogenetic analysis of the genus Pseudoroegneria and the Triticeae tribe using the rbcL gene. Biochemical Systematics and Ecology62, 73–81.

Gilbert J, Haber S. 2013. Overview of some recent research developments in Fusarium head blight of wheat. Canadian Journal of Plant Pathology35, 149–174.

Gong B R, Zhu W, Li S Y, Wang Y Q, Xu L L, Wang Y, Zeng J, Fan X, Sha L N, Zhang H Q, Qi P F, Huang L, Chen G Y, Zhou Y H, Kang H Y. 2019. Molecular cytogenetic characterization of wheat–Elymus repens chromosomal translocation lines with resistance to Fusarium head blight and stripe rust. BMC Plant Biology19, 590.

Guo X R, Shi Q H, Liu Y, Su H D, Zhang J, Wang M, Wang C H, Wang J, Zhang K B, Fu S L, Hu X J, Jing D L, Wang Z, Li J B, Zhang P Z, Liu C, Han F P. 2023. Systemic development of wheat–Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. The Plant Journal114, 1475–1489.

Guo X R, Wang M, Kang H Y, Zhou Y H, Han F P. 2022. Distribution, polymorphism and function characteristics of the GST-encoding Fhb7 in Triticeae. Plants11, 2074.

Han F P, Lamb J C, Birchler J A. 2006. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proceedings of the National Academy of Sciences of the United States of America103, 3238–3243.

Hu W J, Fu L P, Gao D R, Li D S, Liao S, Lu C B. 2023. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in the high-quality soft wheat cultivar Yangmai 15. Journal of Integrative Agriculture22, 360–370.

Jia H W, Feng H, Yang G T, Li H W, Fu S L, Li B, Li Z S, Zheng Q. 2022. Establishment and identification of six wheat-Thinopyrum ponticum disomic addition lines derived from partial amphiploid Xiaoyan 7430. Theoretical and Applied Genetics135, 3277–3291.

Jia H Y, Zhou J Y, Xue S L, Li G Q, Yan H S, Ran C F, Zhang Y D, Shi J X, Jia L, Wang X, Luo J, Ma Z Q. 2018. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. The Crop Journal6, 48–59.

Juliana P, He X Y, Kabir M R, Roy K K, Anwar M B, Marza F, Poland J, Shrestha S, Singh R P, Singh P K. 2020. Genome-wide association mapping for wheat blast resistance in CIMMYT’s international screening nurseries evaluated in Bolivia and Bangladesh. Scientific Reports10, 15972.

Karlsson I, Friberg H, Kolseth A K, Steinberg C, Persson P. 2017. Agricultural factors affecting Fusarium communities in wheat kernels. International Journal of Food Microbiology252, 53–60.

Li G R, Zhang T, Yu Z H, Wang H J, Yang E N, Yang Z J. 2020. An efficient Oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. The Plant Journal105, 978–993.

Li H W, Zhang F P, Zhao J X, Bai G H, Amand P S, Bernardo A, Ni Z F, Sun Q X, Su Z Q. 2022. Identification of a novel major QTL from Chinese wheat cultivar Ji5265 for Fusarium head blight resistance in greenhouse. Theoretical and Applied Genetics135, 1867–1877.

Li J F, Miao B B, Wang S X, Dong W, Xu H X, Si C C, Wang W, Duan S Q, Lou J C, Bao Z W, Zeng H L, Yang Z Z, Cheng W Y, Zhao F, Zeng J M, Liu X S, Wu R, Shen Y, Chen Z, Chen S J, et al. 2022. Hiplot: A comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization. Briefings in Bioinformatics23, bbac261.

Li J J, Li Z, Lü B Y, Fu Y, Zhang S F, Liu S H, Yang Q H, Wu J, Li J C, Chen X H. 2023. Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance. Journal of Integrative Agriculture22, 1291–1307.

Li P Y. 2010. Turf-using germplasm resource evaluation on native Elytrigia repens (L.) Nevski in Xinjiang. Ph D thesis, Xinjiang Agricultural University. (in Chinese)

Liu C, Fels-Klerx H J V D. 2021. Quantitative modeling of climate change impacts on mycotoxins in cereals: A review. Toxins13, 276.

Liu C, Han R, Wang X L, Gong W P, Cheng D G, Cao X Y, Liu A F, Li H S, Liu J J. 2020. Research progress of wheat wild hybridization, disease resistance genes transfer and utilization. Scientia Agricultura Sinica53, 1287–1308. (in Chinese)

Ma Z Q, Xie Q, Li G Q, Jia H Y, Zhou J Y, Kong Z X, Li N, Yuan Y. 2020. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theoretical and Applied Genetics133, 1541–1568.

McMullen M, Bergstrom G, Wolf E D, Dill-Macky R, Hershman D, Shaner G, Sanford D V. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease96, 1712–1728.

Mujeeb-Kazi A, Kazi A G, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang R R C, Xu S, Chen P D, Mahmood T, Bux H, Farrakh S. 2013. Genetic diversity for wheat improvement as a conduit to food security. In: Sparks D L ed., Advances in Agronomy. Academic Press, San Diego. pp. 179–257.

Niranjana M. 2017. Gametocidal genes of Aegilops: Segregation distorters in wheat–Aegilops wide hybridization. Genome60, 639–647.

NY/T 2954-2016. 2016. Technical procedures for identification of Fusarium head blight resistance of wheat varieties in regional trials. Ministry of Agriculture and Rural Affairs, China. (in Chinese)

Oliver R E, Cai X, Xu S S, Chen X, Stack R W. 2005. Wheat-alien species derivatives: A novel source of resistance to Fusarium head blight in wheat. Crop Science45, 1353–1360.

Qi L L, Pumphrey M O, Friebe B, Chen P D, Gill B S. 2008. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics117, 1155–1166.

Shen X R, Ohm H. 2007. Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Molecular Breeding20, 131–140.

Song R R, Cheng Y F, Wen M X, Song X Y, Wang T, Xia M S, Sun H J, Cheng M H, Cui H M, Yuan C X, Liu X X, Wang Z K, Sun L, Wang H Y, Xiao J, Wang X E. 2023. Transferring a new Fusarium head blight resistance locus FhbRc1 from Roegneria ciliaris into wheat by developing alien translocation lines. Theoretical and Applied Genetics136, 36.

Song X Y, Song R R, Zhou J W, Yan W K, Zhang T, Sun H J, Xiao J, Wu Y F, Xi M L, Lou Q F, Wang H Y, Wang X E. 2020. Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L. Chromosome Research28, 171–182.

Tan B W, Wang M M, Cai L, Li S Y, Zhu W, Xu L L, Wang Y, Zeng J, Fan X, Sha L N, Wu D D, Cheng Y R, Zhang H Q, Chen G Y, Zhou Y H, Kang H Y. 2022. Cytogenetic and molecular marker analyses of a novel wheat–Psathyrostachys huashanica 7Ns disomic addition line with powdery mildew resistance. International Journal of Molecular Sciences23, 10285.

Tang Z X, Yang Z J, Fu S L. 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics55, 313–318.

Wan Y F, Yen C, Yang J L. 1997. The diversity of head-scab resistance in Triticeae and their relation to ecological conditions. Euphytica97, 277–281.

Wang H, Cheng S W, Shi Y, Zhang S X, Yan W, Song W F, Yang X F, Song Q J, Jang B, Qi X Y, Li X L, Friebe B, Zhang Y M. 2021. Molecular cytogenetic characterization and Fusarium head blight resistance of five wheat–Thinopyrum intermedium partial amphiploids. Molecular Cytogenetics14, 15.

Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, et al. 2020. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science368, eaba5435.

Wang J, Liu Y L, Su H D, Guo X R, Han F P. 2017. Centromere structure and function analysis in wheat–rye translocation lines. The Plant Journal91, 199–207.

Wang R R C, Li X F, Robbins M D, Larson S R, Bushman S B, Jones T A, Thomas A. 2020. DNA sequence-based mapping and comparative genomics of the St genome of Pseudoroegneria spicata (Pursh) Á. Löve versus wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Genome63, 445–457.

Wang S W, Wang C Y, Feng X B, Zhao J X, Deng P C, Wang Y J, Zhang H, Liu X L, Li T D, Chen C H, Wang B T, Ji W Q. 2022. Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat–Thinopyrum intermedium and wheat–Thinopyrum ponticum substitution lines. BMC Plant Biology22, 111.

Wang X, Li G Q, Jia H Y, Cheng R, Zhong J K, Shi J X, Chen R T, Wen Y X, Ma Z Q. 2024. Breeding evaluation and precise mapping of Fhb8 for Fusarium head blight resistance in wheat (Triticum aestivum). Plant Breeding143, 26–33.

Wu D D, Yang N M, Xiang Q, Zhu M K, Fang Z Y, Zheng W, Lu J L, Sha L N, Fan X, Cheng Y R, Wang Y, Kang H Y, Zhang H Q, Zhou Y H. 2022. Pseudorogneria libanotica intraspecific genetic polymorphism revealed by fluorescence in situ hybridization with newly identified tandem repeats and wheat single-copy gene probes. International Journal of Molecular Sciences23, 14818.

Xiao J, Cheng Y F, Song R R, Sun L, Wang Z K, Yuan C X, Wang H Y, Wang X E. 2021. Creation and utilization of resistant wheat alien germplasms to Fusarium head blight. Current Biotechnology11, 560–566. (in Chinese)

Xing L P, Yuan L, Lv Z S, Wang Q, Yin C H, Huang Z P, Liu J Q, Cao S Q, Zhang R Q, Chen P D, Karafiátová M, Vrána J, Bartoš J, Doležel J, Cao A Z. 2021. Long-range assembly of sequences helps to unravel the genome structure and small variation of the wheat–Haynaldia villosa translocated chromosome 6VS.6AL. Plant Biotechnology Journal19, 1567–1578.

Xu X M, Nicholson P. 2009. Community ecology of fungal pathogens causing wheat head blight. Annual Review of Phytopathology47, 83–103.

Yang G T, Tong C Y, Li H W, Li B, Li Z S, Zheng Q. 2022. Cytogenetic identification and molecular marker development of a novel wheat–Thinopyrum ponticum translocation line with powdery mildew resistance. Theoretical and Applied Genetics135, 2041–2057.

Yang X Y, Xu M R, Wang Y F, Cheng X F, Huang C X, Zhang H, Li T D, Wang C Y, Chen C H, Wang Y J, Ji W Q. 2022. Development and molecular cytogenetic identification of two wheat–Aegilops geniculate Roth 7Mg chromosome substitution lines with resistance to Fusarium head blight, powdery mildew and stripe rust. International Journal of Molecular Sciences23, 7056.

Yen C, Yang J L. 2022. Biosystematics of genus Elymus. In: Biosystematics of Triticeae. volume V. Springer, Singapore. pp. 67–416.

Zeng J, Cao W, Hucl P, Yang Y, Xue A, Chi D, Fedak G. 2013. Molecular cytogenetic analysis of wheat–Elymus repens introgression lines with resistance to Fusarium head blight. Genome56, 75–82.

Zhu Z W, Hao Y F, Mergoum M, Bai G H, Humphreys G, Cloutier S, Xia X C, He Z H. 2019. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. The Crop Journal7, 730–738.

[1] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[2] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[3] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[4] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[5] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[6] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[7] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[8] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[9] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[10] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[11] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[12] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[13] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[14] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[15] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
No Suggested Reading articles found!