Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (2): 371-388    DOI: 10.1016/j.jia.2022.08.091
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize

XU Xiao-hui1*, LI Wen-lan3*, YANG Shu-ke1, ZHU Xiang-zhen2, SUN Hong-wei1, LI Fan1, LU Xing-bo1, CUI Jin-jie2

1 Shandong Key Laboratory of Plant Virology/Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China

2 State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, P.R.China

3 Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

B-box(BBX)基因家族编码的蛋白是由包含锌指结构的转录因子组成,其N端有一个或两个高度保守的B-box基序。BBX蛋白在植物生长发育的各个方面起着至关重要的作用,包括幼苗的光形态发生、避荫、开花时间以及生物和非生物胁迫响应。目前,各国的研究者已经从几种植物中鉴定了BBX的家族成员,然而玉米中的BBX家族成员还知之甚少。通过对玉米BBX家族基因的全基因组鉴定、表达和互作的综合分析,可为了解其功能提供有用信息。本研究共鉴定出36个玉米BBX家族成员,进化分析显示其分布于三个主要分支。在每个主分支中ZmBBXs都具有相似的结构域、基序和基因组结构。基因重复分析表明,玉米BBX蛋白家族的扩张主要是通过片段重复来完成的。利用实时荧光定量PCR技术,本研究分析了ZmBBXs在不同器官组织和不同非生物胁迫条件下的表达。利用生物信息学工具,本研究建立了ZmBBXs蛋白的相互作用网络,并通过双分子荧光互补(BiFC)试验进行了验证。本研究的发现有助于理解ZmBBX家族的复杂性,并为揭示ZmBBX蛋白的生物学功能提供新的线索。



Abstract  

The B-box (BBX) family of proteins consists of zinc-finger transcription factors with one or two highly conserved B-box motifs at their N-termini.  BBX proteins play crucial roles in various aspects of plant growth and development, including seedling photomorphogenesis, shade avoidance, flowering time, and biotic and abiotic stress responses.  Previous studies have identified many different BBXs from several plant species, although the BBX family members in maize are largely unknown.  Genome-wide identification and comprehensive analysis of maize BBX (ZmBBX) expression and interaction networks would therefore provide valuable information for understanding their functions.  In this study, 36 maize BBXs in three major clades were identified.  The ZmBBXs within a given clade were found to share similar domains, motifs, and genomic structures.  Gene duplication analyses revealed that the expansion of BBX proteins in maize has mainly occurred by segmental duplication.  The expression levels of ZmBBXs were analyzed in various organs and tissues, and under different abiotic stress conditions.  Protein–protein interaction networks of ZmBBXs were established using bioinformatic tools and verified by bimolecular fluorescence complementation (BiFC) assays.  Our findings can facilitate a greater understanding of the complexity of the ZmBBX family and provide novel clues for unravelling ZmBBX protein functions

Keywords:  maize       B-box family protein              evolution              expression              protein interaction  
Received: 24 June 2021   Accepted: 23 November 2021
Fund: This work was financially supported by grants from the Natural Science Foundation of Shandong Province, China (ZR2018LC005 and ZR2019BC107) and the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2022C02). 
About author:  Correspondence LU Xing-bo, E-mail: luxb99@sina.com; CUI Jin-jie, E-mail: aycuijinjie@163.com * These authors have contributed equally to this work.

Cite this article: 

XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. 2023. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize. Journal of Integrative Agriculture, 22(2): 371-388.

Borden K L. 1998. RING fingers and B-boxes: zinc-binding protein–protein interaction domains. Biochemistry and Cell Biology, 76, 351–358.
Chang C S J, Li Y H, Chen L T, Hsieh W P, Shin J, Jane W N, Chou S J, Choi G, Hu J M, Somerville S, Wu S H. 2008. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant Journal, 54, 205–219.
Cheng X F, Wang Z Y. 2005. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant Journal, 43, 758–768.
Crocco C D, Botto J F. 2013. BBX proteins in green plants: insights into their evolution, structure feather and function diversification. Gene, 15, 44–52.
Datta S, Hettiarachchi C, Johansson H, Holm M. 2007. SALT TOLERANCE HOMOLOG 2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. Plant Cell, 19, 3242–3255.
Datta S, Hettiarachchi G H C M, Deng X W, Holm M. 2006. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell, 18, 70–84.
Datta S, Johansson H, Hettiarachchi C, Irigoyen M L, Desai M, Rubio V, Holm M. 2008. LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-box protein involved in light dependent development and gene expression, undergoes COP1-mediated ubiquitination. Plant Cell, 20, 2324–2338.
Fan X Y, Sun Y, Cao D M, Bai M Y, Luo X M, Yang H J, Wei C Q, Zhu S W, Sun Y, Chong K, Wang Z Y. 2012. BZS1, a B-box protein, promotes photomorphogenesis downstream of both brassinosteroid and light signaling pathways. Molecular Plant, 5, 591–600.
Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. 2013. The Arabidopsis B-box protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell, 25, 1243–1257.
Gu Z, Cavalcanti A, Chen F C, Bouman P, Li W H. 2002. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Molecular Biology and Evolution, 19, 256–262.
Hassidim M, Harir Y, Yakir E, Kron I, Green R M. 2009. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta, 230, 481–491.
Holm M, Hardtke C S, Gaudet R, Deng X W. 2001. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO Journal, 20, 118–127.
Huang J, Zhao X, Weng X, Wang L, Xie W. 2012. The rice B-box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLoS ONE, 7, e48242.
Jang S, Marchal V, Panigrahi K C S, Wenkel S, Soppe W, Deng X W, Valverde F, Coupland G. 2008. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO Journal, 27, 1277–1288.
Kenrick P, Crane P R. 1997. The origin and early evolution of plants on land. Nature, 389, 33–39.
Khanna R, Kronmiller B, Maszle D R, Coupland G, Holm M, Mizuno T, Wu S H. 2009. The Arabidopsis B-box zinc finger family. Plant Cell, 21, 3416–3420.
Klug A, Schwabe J W. 1995. Protein motifs 5. Zinc fingers. FASEB Journal, 9, 597–604.
Lau K, Podolec R, Chappuis R, Ulm R, Hothorn M. 2019. Plant photoreceptors and their signaling components compete for binding to the ubiquitin ligase COP1 using their VP-peptide motifs. EMBO Journal, 38, e102140.
Laubinger S, Marchal V, Le Gourrierec J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U. 2006. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development, 133, 3213–3222.
Li W, Wang J, Sun Q, Li W, Yu Y, Zhao M, Meng Z. 2017. Expression analysis of genes encoding double B-box zinc finger proteins in maize. Functional & Integrative Genomics, 17, 653–666.
Liu J, Shen J, Xu Y, Li X, Xiao J, Xiong L. 2016. Ghd2, a CONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice. Journal of Experimental Botany, 67, 5785–5798.
Liu H, Dong S, Sun D, Liu W, Gu F, Liu Y, Guo T, Wang J F, Chen Z Q. 2016. CONSTANS-Like 9 (OsCOL9) interacts with receptor for activated C-Kinase 1 (OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways. PLoS ONE, 11, e166249.
Liu X, Li R, Dai Y, Chen X, Wang X. 2018. Genome-wide identification and expression analysis of the B-box gene family in the apple (Malus domestica Borkh.) genome. Molecular Genetics and Genomics, 293, 303–315.
Liu X, Li R, Dai Y, Yuan L, Sun Q, Zhang S, Wang X Y. 2019. A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis. Plant Molecular Biology, 99, 437–447.
Min J H, Chung J S, Lee K H, Kim C S. 2015. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. Journal of Integrative Plant Biology, 57, 313–324.
Nagaoka S, Takano T. 2003. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. Journal of Experimental Botany, 54, 2231–2237.
Narusaka M, Kawai K, Izawa N, Seki M, Shinozaki K, Seo S, Kobayashi M, Shiraishi T, Narusaka Y. 2008. Gene coding for SigA-binding protein from Arabidopsis appears to be transcriptionally up-regulated by salicylic acid and NPR1-dependent mechanisms. Journal of General Plant Pathology, 74, 345–354. 
Park H Y, Lee S Y, Seok H Y, Kim S H, Sung Z R, Moon Y H. 2011. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant and Cell Physiology, 52, 1376–1388.
Peers G, Niyogi K K. 2008. Pond scum genomics: the genomes of Chlamydomonas and Ostreococcus. Plant Cell, 20, 502–507.
Putterill J, Robson F, Lee K, Simon R, Coupland G. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 80, 847–857.
Qi Q, Gibson A, Fu X, Zheng M Y, Kuehn R, Wang Y, Navarro S, Morrell J A, Jiang D M, Simmons G, Bell E, Ivleva N B, McClerren A L, Loida P, Ruff T G, Petracek M, Preuss S. 2012. Involvement of the N-terminal B-box domain of Arabidopsis BBX32 protein in interaction with soybean BBX62 protein. Journal of Biological Chemistry, 287, 31482–31493.
Qin W, Yu Y, Jin Y, Wang X, Liu J, Xi J, Li Z, Li H, Zhao G, Hu W, Chen C, Li F, Yang Z. 2018. Genome-wide analysis elucidateds the role of CONSTANS-like genes in stress responses of cotton. International Journal of Molecular Sciences, 19, 2658.
Robson F, Costa M M, Hepworth S R, Vizir I, Piñeiro M, Reeves P H, Putterill J, Coupland G. 2001. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant Journal, 28, 619–631.
Steinbach Y. 2019. The Arabidopsis thaliana CONSTANS-LIKE 4 (COL4) - A modulator of flowering time. Frontiers in Plant Science, 10, 651.
Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410, 1116–1120.
Sun Y, Fan X Y, Cao D M, Tang W, He K, Zhu J Y, He J X, Bai M Y, Zhu S W, Oh E, Patil S, Kim T W, Ji H K, Wong W H, Rhee S Y, Wang Z Y. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765–777.
Tiwari S B, Shen Y, Chang H C, Hou Y, Harris A, Ma S F, McPartland M, Hymus G J, Adam L, Marion C, Belachew A, Repetti P P, Reuber T L, Ratcliffe O J. 2010. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist, 187, 57–66.
Torok M, Etkin D L. 2000. Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation, 67, 63–71.
Tripathi P, Carvallo M, Hamilton E E, Preuss S, Kay S A. 2017. Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. Proceedings of the National Academy of Sciences of the United States of America, 114, 172–177.
Walley J W, Sartor R C, Shen Z, Schmitz R J, Wu K J, Urich M A, Nery J R, Smith L G, Schnable J C, Ecker J R, Briggs S P. 2016. Integration of omic networks in a developmental atlas of maize. Science, 353, 814–818.
Wang C Q, Guthrie C, Sarmast M K, Dehesh K. 2014. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T 
transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell, 26, 3589–3602.
Wang C Q, Sarmast M K, Jiang J, Dehesh K. 2015. The transcriptional regulator BBX19 promotes hypocotyl growth by facilitating COP1-mediated EARLY FLOWERING3 degradation in Arabidbopsis. Plant Cell, 27, 1128–1139.
Wang Q, Tu X, Zhang J, Chen X, Rao L. 2013. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Molecular Biology Reports, 40, 2679–2688.
Wang Q, Zeng J, Deng K, Tu X, Zhao X, Tang D, Liu X. 2011. DBB1a, involved in gibberellin homeostasis, functions as a negative regulator of blue light-mediated hypocotyl elongation in Arabidopsis. Planta, 233, 13–23.
Xu D, Jiang Y, Li J, Lin F, Holm M, Deng X W. 2016. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences of the United States of America, 113, 7655–7660.
Xu X H, Chen H, Sang Y L, Wang F, Ma J P, Gao, X Q, Zhang X S. 2012. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas. BMC Genomics, 13, 294.
Yamawaki S, Yamashino T, Nakamichi N, Nakanishi H, Mizuno T. 2011. Light-responsive double B-box containing transcription factors are conserved in Physcomitrella pattens. Bioscience Biotechnology and Biochemistry, 75, 2037–2041.
Yang S, Zhang X, Yue J X, Tian D, Chen J Q. 2008. Recent duplications dominate NBS-encoding gene expansion in two woody species. Molecular Genetics and Genomics, 280, 187–198.
Zhang Z, Ji R, Li H, Zhao T, Liu J, Lin C, Liu B. 2014. CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis. Molecular Plant, 7, 1429–1440.
Zobell O, Coupland G, Reiss B. 2005. The family of CONSTANS-like genes in Physcomitrella patens. Plant Biology, 7, 266–275.

[1] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
[2] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[3] YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo. Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2509-2520.
[4] JIAN Jin-zhuo, HUANG Wen-kun, KONG Ling-an, JIAN Heng, Sulaiman ABDULSALAM, PENG De-liang, PENG Huan. Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2591-2601.
[5] ZHANG Lin-zhen, HE Li, WANG Ning, AN Jia-hua, ZHANG Gen, CHAI Jin, WU Yu-jie, DAI Chang-jiu, LI Xiao-han, LIAN Ting, LI Ming-zhou, JIN Long. Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2483-2499.
[6] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[7] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[8] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[9] GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen. A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2295-2305.
[10] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[11] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[12] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[13] SU Qin, LÜ Jun, LI Wan-xue, CHEN Wei-wen, LUO Min-shi, ZHANG Chuan-chuan, ZHANG Wen-qing. The combination of NlMIP and Gαi/q coupled-receptor NlA10 promotes abdominal vibration production in female Nilaparvata lugens (Stål)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2470-2482.
[14] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[15] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
No Suggested Reading articles found!