Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (5): 1243-1252    DOI: 10.1016/S2095-3119(20)63480-3
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
TaIAA15 genes regulate plant architecture in wheat
LI Fu1*, YAN Dong2*, GAO Li-feng2, LIU Pan2, ZHAO Guang-yao2, JIA Ji-zeng2, REN Zheng-long1
1 Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Ya’an 625014, P.R.China
2 National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦(Triticum aestivum L.)是世界上最重要的粮食作物之一。生长素在调节植物生长发育中起关键作用。迄今为止,在小麦中几乎没有生长素相关基因被遗传证明参与小麦株型的调控。在这项研究中,我们克隆了小麦中生长素相关基因TaIAA15s,水稻中的异位表达TaIAA15-3B基因降低了水稻的株高,增加了叶夹角。小麦多样性群体相关性分析表明,TaIAA15-3B基因与小麦的株高(Ph),穗长(SL)和千粒重(TGW)相关;TaIAA15-3B的Hap-II单倍型是优异等位基因,在现代育种TaIAA15-3B的Hap-II单倍型被选择。这项研究揭示了生长素信号传导在小麦植物结构以及产量相关性状上的作用。




Abstract  Bread wheat (Triticum aestivum L.) is one of the most important staple crops worldwide.  The phytohormone auxin plays critical roles in the regulation of plant growth and development.  However, only a few auxin-related genes have been genetically demonstrated to be involved in the control of plant architecture in wheat thus far.  In this study, we characterized an auxin-related gene in wheat, TaIAA15, and found that its ectopic expression in rice decreased the plant height and increased the leaf angle.  Correlation analysis indicated that TaIAA15-3B was associated with plant height (Ph), spike length (SL) and 1 000-grain weight (TGW) in wheat, and Hap-II of TaIAA15-3B was the most favored allele and selected by modern breeding in China.  This study sheds light on the role of auxin signaling on wheat plant architecture as well as yield related traits.
Keywords:  wheat       auxin       plant architecture       TaIAA15       haplotypes  
Received: 14 August 2020   Accepted: 22 October 2020
Fund: This study was supported by the National Basic Research Program of China (2016YFD0100102 and 2016YFD0100302).
About author:  Correspondence REN Zheng-long, E-mail: renzllab@sicau.edu.cn; JIA Ji-zeng, E-mail: jiajizeng@caas.cn * These authors contributed equally to this study.

Cite this article: 

LI Fu, YAN Dong, GAO Li-feng, LIU Pan, ZHAO Guang-yao, JIA Ji-zeng, REN Zheng-long. 2022. TaIAA15 genes regulate plant architecture in wheat. Journal of Integrative Agriculture, 21(5): 1243-1252.

Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W W, William S. 2009. Noble, MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37, 202–208.
Chen Y, Fan X, Song W, Zhang Y, Xu G. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal, 10, 139–149.
Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature, 435, 441–445.
Du H, Wu N, Fu J, Wang S P, Li X H, Xiao J H, Xiong L Z. 2012. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany, 63, 6467–6480.
Flister L, Galushko V. 2016. The impact of wheat market liberalization on the seed industry’s innovative capacity: An assessment of Brazil’s experience. Agricultural and Food Economics, 4, 11.
Guo T, Chen K, Dong N Q, Ye W W, Shan J X, Lin H X. 2020. Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. Journal of Integrative Plant Biology, 62, 581–600. 
IWGSC (International Wheat Genome Sequencing Consortium), IWGSC RefSeq Principal Investigators, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, IWGSC whole-genome assembly principal investigators, Pozniak C J, Stein N, Choulet F, Distelfeld A, Eversole K, Poland J, Rogers J, Ronen G, Sharpe A G, Pozniak C, Ronen G, et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.
Jiang M, Hu H, Kai J, Traw M B, Yang S, Zhang X. 2019. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. Plant Molecular Biology, 100, 467–479.
Lee J, Park J J, Kim S L, Yim J, An G. 2007. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Molecular Biology, 65, 487–499.
Ling H Q, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, et al. 2018. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 557, 424–428.
Liu K Y, Cao J, Yu K H, Liu X Y, Gao Y J, Chen Q, Zhang W J, Peng H R, Du J K, Xin M M, Hu Z R, Guo W L, Rossi V, Ni Z F, Sun Q X, Yao Y Y. 2019. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiology, 181, 179–194.
Liu X, Yang C Y, Miao R, Zhou C L, Cao P H, Lan J, Zhu X J, Mou C L, Huang Y S, Liu S J, Tian Y L, Nguyen T L, Jiang L, Wan J M. 2018. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice, 11, 46.
Luo J, Zhou J J, Zhang J Z. 2018. Aux/IAA gene family in plants: Molecular structure, regulation, and function. International Journal of Molecular Sciences, 19, 259. 
Luo M C, Gu Y Q, Puiu D, Wang H, Twardziok S O, Deal K R, Huo N, Zhu T, Wang L, Wang Y, McGuire P E, Liu S, Long H, Ramasamy R K, Rodriguez J C, Van S L, Yuan L, Wang Z, Xia Z, Xiao L, et al. 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 551, 498–502.
Luo X Y, Zheng J S, Huang R Y, Huang Y M, Wang H C, Jiang L R, Fang X J. 2016. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Reports, 35, 2423–2433.
Moreno M A, Harper L C, Krueger R W, Dellaporta S L, Freeling M. 1997. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development, 11, 616–628.
Ramírez-González R H, Cory A T, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout C J, Chalhoub B, Mayer K F X, Benhamed M, Latrasse D, Bendahmane A, IWGSC (International Wheat Genome Sequencing Consortium), Wulff B B H, Appels R, Tiwari V, Datla R, Choulet F, et al. 2018. The transcriptional landscape of polyploid wheat. Science, 361, eaar6089.
Salehin M, Bagchi R, Estelle M. 2015. SCFTIR1/AFB-based auxin perception: Mechanism and role in plant growth and development. The Plant Cell, 27, 9–19.
Singh K, Singh J, Jindal S, Sidhu G, Dhaliwal A, Gill K. 2019. Structural and functional evolution of an auxin efflux carrier PIN1 and its functional characterization in common wheat. Functional & Integrative Genomics, 19, 29–41.
Song Y, Xu Z F. 2013. Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to auxin. International Journal of Molecular Sciences, 14, 13645–13656.
Wang R, Estelle M. 2014. Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway. Current Opinion in Plant Biology, 21, 51–58.
Winkler M, Niemeyer M, Hellmuth A, Janitza P, Christ G, Samodelov S L, Wilde V, Majovsky P, Trujillo M, Zurbriggen M D, Hoehenwarter W, Quint M, Villalobos L I A C. 2017. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nature Communications, 8, 15706.
Wu J, Zhang Z, Zhang Q, Liu Y, Zhu B, Cao J, Li Z, Han L, Jia J, Zhao G, Sun X. 2015. Generation of wheat transcription factor FOX rice lines and systematic screening for salt and osmotic stress tolerance. PLoS ONE, 10, e0132314.
Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q, Geisler M, Jiang D A, Qi Y. 2015. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environment, 38, 638–654.
Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X, Jiang W, Mao L, Kong X, Jiao Y, Jia J. 2017. The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants, 3, 946–955.
Zhao S Q, Xiang J J, Xue H W. 2013. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Molecular Plant, 6, 174–187.

[1] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[2] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[3] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[4] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[5] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[6] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[7] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[8] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[9] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[10] Yingxia Dou, Hubing Zhao, Huimin Yang, Tao Wang, Guanfei Liu, Zhaohui Wang, Sukhdev Malhi.

The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number [J]. >Journal of Integrative Agriculture, 2024, 23(3): 836-848.

[11] Yonghui Fan, Boya Qin, Jinhao Yang, Liangliang Ma, Guoji Cui, Wei He, Yu Tang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Zhenglai Huang.

Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 536-550.

[12] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[13] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[14] Binbin Li, Xianmin Chen, Tao Deng, Xue Zhao, Fang Li, Bingchao Zhang, Xin Wang, Si Shen, Shunli Zhou.

Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize [J]. >Journal of Integrative Agriculture, 2024, 23(2): 551-565.

[15] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

No Suggested Reading articles found!