Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3408-3416    DOI: 10.1016/j.jia.2022.08.100
Special Issue: 线虫合辑Nematology
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |
Study on PCR rapid molecular detection technique of Meloidogyne vitis

YANG Yan-mei1, 2, LIU Pei3, LI Hong-mei4, PENG Huan5, DU Xia1, 2, DONG Ye1, 2, HU Xian-qi1, 2

College of Plant Protection, Yunnan Agricultural University, Kunming 650201. P.R.China 

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P.R.China

Institute of Agricultural Environment & Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R.China

International College, Yunnan Agricultural University, Kunming 650201, P.R.China

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

葡萄根结线虫(Meloidogyne vitis)是在云南省葡萄根部发现的一种新的根结线虫种类,该线虫在侵染地高密度存在,已对葡萄造成严重损害。葡萄根结线虫病的发生可能对我国葡萄产业发展构成威胁,为了建立一种快速、可靠的葡萄根结线虫特异性分子检测方法,本研究以葡萄根结线虫核糖体DNA内转录间隔区(ribosomal DNA-internal transcribed spacer,rDNA-ITS)基因片段为靶标,设计筛选葡萄根结线虫种特异性检测引物,通过优化反应体系,并对所设计引物的可靠性、特异性及灵敏性进行检测验证,建立了葡萄根结线虫PCR快速分子检测技术体系。结果表明,优化后的引物最佳退火温度为53℃,该引物能够对不同龄期葡萄根结线虫进行检测;特异性检测结果表明,本研究建立的PCR分子检测技术能够从葡萄根结线虫中扩增获得长度为174 bp的特异性片段,选用的5种非靶标根结线虫则无任何扩增条带,从而将葡萄根结线虫和其他5种非靶标根结线虫有效区分开;灵敏度检测结果表明,该PCR分子检测技术能够有效的检测单头2龄幼虫和10-4头雌虫的DNA;此外,该PCR分子检测技术能够从混合线虫种群中特异性地检测出葡萄根结线虫,并能够有效检测出土壤中的葡萄根结线虫,检测灵敏度为0.5 g土壤中可检测出22龄幼虫或一头雄虫。本研究建立的快速、灵敏、特异的PCR分子检测技术可用于葡萄根结线虫单头2龄幼虫的直接鉴定、混合线虫群体中葡萄根结线虫的检测及0.5 g土壤中22龄幼虫或一头雄虫的直接检测。本研究建立的PCR分子检测技术能够准确、快速地检测出葡萄根结线虫,将为葡萄根结线虫的发生危害调查和高效绿色防控策略的制定提供技术支撑。

Abstract  Meloidogyne vitis is a new root-knot nematode parasitic on grape root in Yunnan Province, China.  In order to establish a rapid, reliable and specific molecular detection method for Mvitis, the species-specific primers were designed with rDNA-ITS (ribosomal DNA internal transcribed spacer) gene fragment as the target.  The reaction system was optimized and the reliability, specificity and sensitivity of primer were testified, therefore, a rapid PCR detection method for Mvitis was established.  The result showed that the optimal annealing temperature of the primers was 53°C, which was suitable for the detection of different life stages of Mvitis.  Specificity test showed that the specific fragment size of 174 bp was obtained from Mvitis, but other five non-target nematodes did not have any amplification bands, thus effectively distinguish Mvitis and the other five species, and could specifically detect the Mvitis from mixed populations.  Sensitivity test showed that this PCR technique could detect the DNA of a single second-stage juvenile (J2) and 10–4 female.  Futhermore, this PCR technique could be used to detect directly M. vitis from soil samples.  The rapid, sensitive and specific PCR molecular detection technique could be used for the direct identification of a single J2 of Mvitis and the detection of Mvitis in mixed nematode populations and the detection of two J2s or one male in 0.5 g soil samples, which will provide technical support for the investigation of the occurrence and damage of Mvitis and the formulation of efficient green control strategies.

Keywords:  Meloidogyne vitis        PCR rapid detection       reliability       specificity       sensitivity  
Received: 13 August 2021   Accepted: 13 February 2022

This research was supported by the grants from the National Key Research and Development Program of China (2018YFD0201202 and 2017YFD0200601).  

About author:  YANG Yan-mei, E-mail:; Correspondence HU Xian-qi, Tel: +86-871-65220998, Fax: +86-871-65227695, E-mail:

Cite this article: 

YANG Yan-mei, LIU Pei, LI Hong-mei, PENG Huan, DU Xia, DONG Ye, HU Xian-qi. 2022. Study on PCR rapid molecular detection technique of Meloidogyne vitis. Journal of Integrative Agriculture, 21(11): 3408-3416.

Baidoo R, Joseph S, Mengistu T M, Brtto J, Mcsorley R, Stamps R H, Crow W T. 2016. Mitochondrial haplotype-based identification of root-knot nematodes (Meloidogyne spp.) on cut foliage crops in Florida. Journal of Nematology, 48, 193–202.
Blok V C, Powers T O. 2009. Biochemical and molecular identification. In: Perry R N, Moens M, Starr J L, eds., Root Knot Nematodes. CAB International, Wallingford. pp. 98–112.
Carneiro R M D G, Almeida M R A, Cofcewicz E T, Magunacelaya J C, Aballay E. 2007. Meloidogyne ethiopica, a major root-knot nematode parasitizing Vitis vinifera and other crops in Chile. Nematology, 9, 635–641. 
Carneiro R M D G, Correa V R, Almeida M R A, Gomes A C M M, Deimi A M, Castagnone-Sereno P, Karssen G. 2014. Meloidogyne luci n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising different crops in Brazil, Chile and Iran. Nematology, 16, 289–301.
Chen Z J, Zhang S L, Zhang F. 2013. Basics and Techniques of Root-Knot Nematode Control for Vegetables in Facilities. Science and Technology Press, Beijing. p. 2. (in Chinese)
Correa V R, Mattos V S, Almeida M R A, Santos M F A, Tigano M S, Castagnone-Sereno P, Carneiro R M D G. 2014. Genetic diversity of the root-knot nematode Meloidogyne ethiopica and development of a species-specific SCAR marker for its diagnosis. Plant Pathology, 63, 476–483.
Dong K, Dean R A, Fortnum B A, Lewis S A. 2001. Development of PCR primers to identify species of root-knot nematodes: Meloidogyne arenaria, M. hapla, M. incognita and M. javanica. Nematropica, 31, 271–280.
Esmenjaud D, Bouquet A. 2009. Selection and application of resistant germplasm for grapevine nematodes management. In: Ciancio A, Mukerji K G, eds., Integrated Management of Fruit Crops and Forest Nematodes. Springer, Netherlands. pp. 195–214.
Golden A M, Rose L M, Bird G W. 1981. Description of Meloidogyne nataliei n. sp. (Nematoda: Meloidogynidae) from grape (Vitis labrusca) in Michigan, with SEM observations. Journal of NematoIogy, 13, 393–400.
He Q C, Wang D W, Zhang D Y, Liu Y, Wang J, Cheng F X. 2020. Identification and PCR detection of citrus root-knot nematode in Hunan province. Plant Protection, 46, 179–184. (in Chinese)
He X F, Peng H, Ding Z, He W T, Huang W K, Peng D L. 2013. Loop-mediated isothermal amplification assay for rapid diagnosis of Meloidogyne enterolobii directly from infected plants. Scientia Agricultura Sinica, 46, 534–544. (in Chinese) 
Htay C C, Peng H, Huang W, Kong L, He W, Holgado R, Peng D. 2016. The development and molecular characterization of a rapid detection method for rice root-knot nematode (Meloidogyne graminicola). European Journal of Plant Pathology, 146, 281–291.
Htay C C. 2017. Molecular and morphological characterization of rice root nematodes (M. graminicola, Hirschmanniella spp. and H. elachista). Ph D thesis, Chinese Academy of Agricultural Sciences, China. (in Chinese)
Huang M T. 2016. Identification of several kings of important pathogenic nematodes in citrus. MSc thesis, Fujian Agriculture and Forestry University, China. (in Chinese)
Ji J Q. 2005. Identification of root-knot nematodes from Hainan Province and PCR assay for identification of Meloidogyne hapla. MSc thesis, Nanjing Agricultural University, China. (in Chinese)
Jian H. 2011. Plant Nematology. China Agricultural University Press, Beijing. pp. 68–69. (in Chinese) 
Li C C, Wang W X, Zhang Y S, Shi S Y, Wang L H, Zhang G M. 1991. Research on the occurrence and control of grape root-knot nematode disease. Shandong Agriculture Sciences, (04), 37–38. (in Chinese)
Liu H. 2005. Biological and molecular characterization of Meloidogyne enterolobii. MSc thesis, Nanjing Agricultural University, China. (in Chinese)
Liu S J, Yu Q L, Li H L. 2011. Study on rDNA-ITS-PCR of root-knot nematode in grape in the Chinese Yellow River east region. Journal of Fruit Science, 28, 1104–1106. (in Chinese)
Liu Y, Zhang H. 2017. Present situation and control strategy of grape root-knot nematode disease in the Huaihai economic zone. Anhui Agriculture Science Bulletin, 23, 76–79. (in Chinese)
Long H, Liu H, Xu J H. 2006. Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathologica Sinica, 36, 109–115.
McLeod R W, Khair G T. 1973. Male intersexes in Meloidogyne thamesi. Nematologica, 19, 561–562. 
Meng Q P, Long H, Xu J H. 2004. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. arenaria. Acta Phytopathologica Sinica, 34, 204–210.
Nicol J M, Stirling G R, Rose B J, May P, Heeswijck R V. 1999. Impact of nematodes on grapevine growth and productivity: current knowledge and future directions, with special reference to Australian viticulture. Australian Journal of Grape and Wine Research, 5, 109–127.
Qin X Y, Duan Y Q, Yang M. 1991. Preliminary report on the identification of root-knot nematode pathogen in Yunnan tobacco. Yunnan Agriculture Science and Technology, (04), 22–23. (in Chinese)
Smith H M, Smith B P, Morales N B, Moskwa S, Clingeleffer P R, Thomas M R. 2018. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by sequenom MassARRAY validation. PLoS ONE, 13, 1–27.
Sun Y, Wang S H. 1992. Species of root-peripheral nematodes of grapes in Turpan region. Xinjiang Agricultural Sciences, (06), 262–263. (in Chinese)
Tao Y, Xu C L, Yuan C F, Wang H H, Lin B R, Zhuo K, Liao J L. 2017. Meloidogyne aberrans sp. nov. (Nematoda: Meloidogynidae), a new root-knot nematode parasitizing kiwifruit in China. PLoS ONE, 12, 1–22.
Tigano M, Siqueira K, Castagnone-Sereno P, Mulet K, Queiroz P, Santos M, Teixeira C, Almeida M, Silva J, Carneiro R. 2010. Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species. Plant Pathology, 59, 1054–1061.
Vrain T C, Wakarchuk D A, Laplantelevesque A C, Hamilton R H I. 1992. Intraspecific rDNA restrietion fragment length polymorphisrms in the Xiphinema americanum group. Fundamental and Applied Nematology, 15, 563–573.
Wei X J, Yang W X, Liu D Q, Zhang T. 2005. Screening of biocontrol agents to vegetable root-knot nematode. Journal of Hebei Agricultural University, 28, 67–70. (in Chinese)
Yang M Y. 2003. Occurrence characteristics and control of grape root-knot nematode disease. Guangxi Horticulture, 24. (in Chinese)
Yang Y M, Hu X Q, Liu P, Chen L, Peng H, Wang Q M, Zhang Q. 2021. A new root-knot nematode, Meloidogyne vitis sp. nov. (Nematoda: Meloidogynidae), parasitizing grape in Yunnan. PLoS ONE, 16, 1–25.
Yang Y M, Liang Y, Yuan S J, Zhao X C, Hu X Q. 2017. Morphology and molecular identification of root-knot nematode in partial tobacco growing areas in Yunnan. Journal of Southern Agriculture, 48, 284–291. (in Chinese)
Yang Y M, Liu P, Dong H, Zhang W T, Hu X Q. 2020. Pathogen identification of Eupatorium adenophorum root-knot nematode disease in Yunnan Province. Journal of Plant Protection, 47, 657–665. (in Chinese)
Zhang F, Yang M M, Sun J, Hong B, Zhang S L. 2014. Specific molecular assay for the detection of greenhouse vegetables Meloidogyne spp. in Shanxi. Chinese Agricultural Science Bulletin, 30, 136–140. (in Chinese)
Zhang S L. 2016. Dentification, biology and rapid detection technology of a new stem nematode (Ditylenchus arachis n. sp.) on Peanut. Ph D thesis, Fujian Agriculture and Forestry University, China. (in Chinese)
Zijlstra C, Donkers-Venne D T H M, Fargette M. 2000. Identication of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology, 2, 847–853.

[1] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
[2] SHAN Yan-ju, JI Gai-ge, ZOU Jian-min, ZHANG Ming, TU Yun-jie, LIU Yi-fan, JU Xiao-jun, SHU Jing-ting. PGC-1α differentially regulates the mRNA expression profiles of genes related to myofiber type specificity in chicken[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2083-2094.
[3] LI Zhen-hai, JIN Xiu-liang, LIU Hai-long, XU Xin-gang, WANG Ji-hua. Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1547-1561.
[4] GUO Liu-ming, HE Jing, LI Jing, CHEN Jian-ping, ZHANG Heng-mu. Chinese wheat mosaic virus: A long-term threat to wheat in China[J]. >Journal of Integrative Agriculture, 2019, 18(4): 821-829.
[5] Gniewko Niedbała. Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield[J]. >Journal of Integrative Agriculture, 2019, 18(1): 54-61.
[6] ZHANG Jia, HU Yong, XU Li-he, HE Qin, FAN Xiao-wei, XING Yong-zhong. The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2686-2697.
[7] CAI Wen-yang, TAN Lu-bin, LIU Feng-xia, SUN Chuan-qing. Identification of quantitative trait loci and candidate genes associated with ABA sensitivity in common wild rice (Oryza rufipogon Griff.)[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2375-2385.
[8] XING Hui-min, XU Xin-gang, LI Zhen-hai, CHEN Yi-jin, FENG Hai-kuan, YANG Gui-jun, CHEN Zhao-xia. Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2444-2458.
[9] LIU Cheng SUN Bao-cheng, TANG Huai-jun, WANG Tian-yu LI Yu, ZHANG Deng-feng, XIE Xiao-qing, SHI Yun-su, SONG Yan-chun, YANG Xiao-hong, LI Jian-sheng . Simple nonlinear model for the relationship between maize yield and cumulative water amount[J]. >Journal of Integrative Agriculture, 2017, 16(04): 858-866.
[10] SONG Wen-en, CHEN Shi-bao, LIU Ji-fang, CHEN Li, SONG Ning-ning, LI Ning, LIU Bin. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1845-1854.
[11] JIN Rong, LIU Nai-yong, LIU Yan, DONG Shuang-lin. A larval specific OBP able to bind the major female sex pheromone component in Spodoptera exigua (Hübner)[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1356-1366.
[12] LI Bo, LIU Ji-fang, YANG Jun-xing, MA Yi-bing, cHEN Shi-bao. comparison of phytotoxicity of copper and nickel in soils with different chinese plant species[J]. >Journal of Integrative Agriculture, 2015, 14(6): 1192-1201.
[13] Jiang Yue-li, Guo Yu-yuan, Wu Yu-qing, Li Tong, Duan Yun, Miao Jin, Gong Zhong-jun, Huang Zhi-juan. Spectral sensitivity of the compound eyes of Anomala corpulenta motschulsky (Coleoptera: Scarabaeoidea)[J]. >Journal of Integrative Agriculture, 2015, 14(4): 706-713.
[14] YOU Meng-yang, YUAN Ya-ru, LI Lu-jun, XU Yan-li , HAN Xiao-zeng. Soil CO2 Emissions as Affected by 20-Year Continuous Cropping in Mollisols[J]. >Journal of Integrative Agriculture, 2014, 13(3): 615-623.
[15] Niks R E. How Specific is Non-Hypersensitive Host and Nonhost Resistance of Barley to Rust and Mildew Fungi?[J]. >Journal of Integrative Agriculture, 2014, 13(2): 244-254.
No Suggested Reading articles found!