Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (1): 202-213    DOI: 10.1016/j.jia.2022.08.105
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
The collagen type I alpha 1 chain gene is an alternative safe harbor locus in the porcine genome

XIANG Guang-ming1*, ZHANG Xiu-ling1*, XU Chang-jiang1, FAN Zi-yao1, XU Kui1, WANG Nan1, WANG Yue1, 2, CHE Jing-jing1, XU Song-song1, 3, MU Yu-lian1, LI Kui1, 3, LIU Zhi-guo1

1 State Key Laboratory of Animal Nutrition/Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

2 School of Life Science and Engineering, Foshan University, Foshan 528231, P.R.China

3 Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

外源基因在转基因动物和细胞中稳定、高效的表达,对于基因功能的研究和生物反应器的建立至关重要。动物基因组中的友好基因座能使外源基因高效稳定的表达且无副作用,但目前猪基因组中可供外源基因安全、高效定点整合的基因座相对较少,限制了多转基因猪的研究和发展。本研究提出了一种将猪I型胶原α1(collagen type I alpha 1 chain,COL1A1基因座作为友好基因座表达外源基因的新策略。利用CRISPOR软件设计了一对靶向COL1A1基因终止密码子的sgRNA并连接到CRISPR/Cas9表达载体pX330中;同时合成了一个不含启动子、左右同源臂各长为900 bp的2A-GFP供体载体,然后共转染猪肾上皮细胞(porcine kidney epithelial,PK15),胎儿成纤维细胞(porcine embryonic fibroblast,PEF)以及回肠上皮细胞(porcine intestinal epithelial,IPI-2I3种细胞。电转染48 h后观察3种细胞的荧光情况,72 h后通过流式细胞术分选绿色荧光蛋白阳性的细胞,并通过荧光定量、蛋白质印记、转录组测序和CCK8实验在不同水平上评估COL1A1基因作为猪基因组外源基因定点整合位点的安全性。结果表明,共转染sgRNA和供体载体之后,可以分别在猪3种不同细胞中观察到绿色荧光,说明同源重组介导的定点整合系统可以在猪基因组中很好的发挥作用。qPCR结果显示,GFP敲入对3种细胞COL1A1基因mRNA表达显著影响(PK15PEFIPI-2I细胞中的P分别为0.290.660.20。同样,蛋白质印记结果显示,GFP阳性细胞与野生型细胞COL1A1蛋白的表达并无显著差异(PK15PEFIPI-2I细胞中的P分别为0.640.480.80)转录组测序结果显示,GFP阳性PEF细胞与野生型PEF细胞的转录组显著正相关P<2.2e-16),表明GFP敲入没有改变内源性基因的整体表达。CCK8实验表明,GFP入对PK15细胞增殖显著影响(24 h48 h,72 h,96 h120 h的P值分别为0.31,0.96,0.24,0.17和0.38)上述结果表明,COL1A1基因可作为猪基因组外源基因定点整合友好基因座,可广泛应用于家畜育种和生物医学模型的建立。本研究首次鉴定出了COL1A1基因可以作为猪基因组中的友好基因座。



Abstract  

Efficient and stable expression of foreign genes in cells and transgenic animals is important for gain-of-function studies and the establishment of bioreactors.  Safe harbor loci in the animal genome enable consistent overexpression of foreign genes, without side effects.  However, relatively few safe harbor loci are available in pigs, a fact which has impeded the development of multi-transgenic pig research.  We report a strategy for efficient transgene knock-in in the endogenous collagen type I alpha 1 chain (COL1A1) gene using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system.  After the knock-in of a 2A peptide-green fluorescence protein (2A-GFP) transgene in the last codon of COL1A1 in multiple porcine cells, including porcine kidney epithelial (PK15), porcine embryonic fibroblast (PEF) and porcine intestinal epithelial (IPI-2I) cells, quantitative PCR (qPCR), Western blotting, RNA-seq and CCK8 assay were performed to assess the safety of COL1A1 locus.  The qPCR results showed that the GFP knock-in had no effect (P=0.29, P=0.66 and P=0.20 for PK15, PEF and IPI-2I cells, respectively) on the mRNA expression of COL1A1 gene.  Similarly, no significant differences (P=0.64, P=0.48 and P=0.80 for PK15, PEF and IPI-2I cells, respectively) were found between the GFP knock-in and wild type cells by Western blotting.  RNA-seq results revealed that the transcriptome of GFP knock-in PEF cells had a significant positive correlation (P<2.2e–16) with that of the wild type cells, indicating that the GFP knock-in did not alter the global expression of endogenous genes.  Furthermore, the CCK8 assay showed that the GFP knock-in events had no adverse effects (P24h=0.31, P48h=0.96, P72h=0.24, P96h=0.17, and P120h=0.38) on cell proliferation of PK15 cells.  These results indicate that the COL1A1 locus can be used as a safe harbor for foreign genes knock-in into the pig genome and can be broadly applied to farm animal breeding and biomedical model establishment

Keywords:  COL1A1 gene       safe harbor       knock-in       CRISPR/Cas9       pig  
Received: 11 August 2021   Accepted: 20 December 2021
Fund: 

This work was financially supported by the Major Scientific Research Tasks for Scientific and Technological Innovation Projects of the Chinese Academy of Agricultural Sciences (CAAS-ZDRW202006), the National Transgenic Breeding Project (2018ZX08010-10B) and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (ASTIP-IAS05).

About author:  Received 11 August, 2021 Accepted 20 December, 2021 XIANG Guang-ming, E-mail: guangming202012@163.com; ZHANG Xiu-ling, E-mail: xiulingzhang2014@163.com; Correspondence LIU Zhi-guo, E-mail: zhiguoliu2010@126.com * These authors contributed equally to this study.

Cite this article: 

XIANG Guang-ming, ZHANG Xiu-ling, XU Chang-jiang, FAN Zi-yao, XU Kui, WANG Nan, WANG Yue, CHE Jing-jing, XU Song-song, MU Yu-lian, LI Kui, LIU Zhi-guo. 2023. The collagen type I alpha 1 chain gene is an alternative safe harbor locus in the porcine genome. Journal of Integrative Agriculture, 22(1): 202-213.

Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R. 2006. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis, 44, 23–28.
Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D. 2004. Extra-cellular matrix in vascular networks. Cell Proliferation, 37, 207–220.
Capecchi M R. 2005. Gene targeting in mice: Functional analysis of the mammalian genome for the twenty-first century. Nature Reviews Genetics, 6, 507–512.
Concordet J P, Haeussler M. 2018. CRISPOR: Intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 46, W242–W245.
ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.
Han X S, Xiong Y C, Zhao C Z, Xie S S, Li C C, Li X Y, Liu X D, Li K, Zhao S H, Ruan J X. 2019. Identification of glyceraldehyde-3-phosphate dehydrogenase gene as an alternative safe harbor locus in pig genome. Genes (Basel), 10, 660–670. 
Huang J, Wang A T, Huang C, Sun Y F, Song B X, Zhou R, Li L. 2020. Generation of marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems. Genes (Basel), 11, 951. 
Jia R, Wang C. 2020. MiR-29b-3p reverses cisplatin resistance by targeting COL1A1 in non-small-cell lung cancer A549/DDP cells. Cancer Management Research, 12, 2559–2566.
Karsenty G, Park R W. 1995. Regulation of type I collagen genes expression. International Reviews of Immunology, 12, 177–185.
Lai L X, Kolber-Simonds D, Park K W, Cheong H T, Greenstein J L, Im G S, Samuel M, Bonk A, Rieke A, Day B N, Murphy C N, Carter D B, Hawley R J, Prather R S. 2002. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 295, 1089–1092.
Li G L, Zhang X W, Wang H Q, Mo J X, Zhong C L, Shi J S, Zhou R, Li Z C, Yang H Q, Wu Z F, Liu D W. 2020. CRISPR/Cas9-mediated integration of large transgene into pig CEP112 locus. G3 - Genes Genomes Genetics, 10, 467–473.
Li X P, Yang Y, Bu L, Guo X G, Tang C C, Song J, Fan N N, Zhao B T, Ouyang Z, Liu Z M, Zhao Y, Yi X L, Quan L Q, Liu S C, Yang Z G, Ouyang H S, Chen Y E, Wang Z, Lai L X. 2014. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Research, 24, 501–504.
Ma L Y, Wang Y Z, Wang H T, Hu Y Q, Chen J Y, Tan T, Hu M, Liu X J, Zhang R, Xing Y M, Zhao Y Q, Hu X X, Li N. 2018. Screen and verification for transgene integration sites in pigs. Scientific Reports, 8, 7433–7443. 
Mccreath K J, Howcroft J, Campbell K H, Colman A, Schnieke A E, Kind A J. 2000. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 405, 1066–1069.
Ohtsuka M. 2014. Development of pronuclear injection-based targeted transgenesis in mice through Cre-loxP site-specific recombination. Methods in Molecular Biology, 1194, 3–19.
Perleberg C, Kind A, Schnieke A. 2018. Genetically engineered pigs as models for human disease. Disease Models & Mechanisms, 11, 11–22. 
Ranawakage D C, Okada K, Sugio K, Kawaguchi Y, Kuninobu-Bonkohara Y, Takada T, Kamachi Y. 2021. Efficient CRISPR-Cas9-mediated knock-in of composite tags in zebrafish using long ssDNA as a donor. Frontiers in Cell and Developmental Biology, 8, 598634.
Ruan J X, Li H G, Xu K, Wu T W, Wei J L, Zhou R, Liu Z G, Mu Y L, Yang S L, Ouyang H S, Chen-Tsai R Y, Li K. 2015. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports, 5, 14253–14262.
Sadelain M, Papapetrou E P, Bushman F D. 2012. Safe harbours for the integration of new DNA in the human genome. Nature Reviews Cancer, 12, 51–58.
Shin S K, Kaiser E E, West F D. 2020. Alcohol induced brain and liver damage: Advantages of a porcine alcohol use disorder model. Frontiers in Physiology, 11, 592950.
Shintani Y, Hollingsworth M A, Wheelock M J, Johnson K R. 2006. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Research, 66, 11745–11753.
Tran N T, Sommermann T, Graf R, Trombke J, Pempe J, Petsch K, Kuhn R, Rajewsky K, Chu V T. 2019. Efficient CRISPR/Cas9-mediated gene knockin in mouse hematopoietic stem and progenitor cells. Cell Reports, 28, 3510–3522.
Wakasa Y, Ozawa K, Takaiwa F. 2009. Higher-level accumulation of foreign gene products in transgenic rice seeds by the callus-specific selection system. Journal of Bioscience and Bioengineering, 107, 78–83. 
Wang K K, Ouyang H S, Xie Z C, Yao C G, Guo N N, Li M J, Jiao H P, Pang D X. 2015. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific Reports, 5, 16623–16633. 
Wang K K, Tang X C, Xie Z C, Zou X D, Li M J, Yuan H M, Guo N N, Ouyang H S, Jiao H P, Pang D X. 2017. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Research, 26, 799–805.
Whitworth K M, Rowland R R R, Ewen C L, Trible B R, Kerrigan M A, Cino-Ozuna A G, Samuel M S, Lightner J E, Mclaren D G, Mileham A J, Wells K D, Prather R S. 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 34, 20–22.
Xie Z C, Pang D X, Wang K K, Li M J, Guo N N, Yuan H M, Li J N, Zou X D, Jiao H P, Ouyang H S, Li Z J, Tang X C. 2017. Optimization of a CRISPR/Cas9-mediated knock-in strategy at the porcine Rosa26 locus in porcine foetal fibroblasts. Scientific Reports, 7, 3036–3047.
Xiong Y C, Han X S, Zhang J F, Zhao G X, Wang Z C, Zhuang R Z, Nie X W, Xie S S, Li C C, Li X Y, Liu X D, Li K, Zhao S H, Ruan J X. 2020. Identification of ACTB gene as a potential safe harbor locus in pig genome. Molecular Biotechnology, 62, 589–597.
Xu K, Zhou Y R, Mu Y L, Liu Z G, Hou S H, Xiong Y J, Fang L R, Ge C L, Wei Y H, Zhang X L, Xu C J, Che J J, Fan Z Y, Xiang G M, Guo J K, Shang H T, Li H, Xiao S B, Li J L, Li K. 2020. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife, 9, e57132–e57155.
Yang D S, Wang C E, Zhao B T, Li W, Ouyang Z, Liu Z M, Yang H Q, Fan P, O’Neill A, Gu W W, Yi H, Li S H, Lai L X, Li X J. 2010. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Human Molecular Genetics, 19, 3983–3994.
Yang H Q, Wu Z F. 2018. Genome editing of pigs for agriculture and biomedicine. Frontiers in Genetics, 9, 360–371.
Yao X, Wang X, Hu X D, Liu Z, Liu J L, Zhou H B, Shen X W, Wei Y, Huang Z J, Ying W Q, Wang Y, Nie Y H, Zhang C C, Li S L, Cheng L P, Wang Q F, Wu Y, Huang P Y, Sun Q, Shi L Y, et al. 2017. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Research, 27, 801–814.
Zhou Z P, Yang L L, Cao H, Chen Z R, Zhang Y, Wen X Y, Hu J. 2019. In vitro validation of a CRISPR-mediated CFTR correction strategy for preclinical translation in pigs. Human Gene Therapy, 30, 1101–1116.
[1] CAO Song, SUN Dong-dong, LIU Yang, YANG Qing, WANG Gui-rong.

Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda [J]. >Journal of Integrative Agriculture, 2023, 22(7): 2162-2172.

[2] XU Kui, ZHOU Yan-rong, SHANG Hai-tao, XU Chang-jiang, TAO Ran, HAO Wan-jun, LIU Sha-sha, MU Yu-lian, XIAO Shao-bo, LI Kui. Pig macrophages with site-specific edited CD163 decrease the susceptibility to infection with porcine reproductive and respiratory syndrome virus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2188-2199.
[3] LIAO Zhen-qi, DAI Yu-long, WANG Han, Quirine M. KETTERINGS, LU Jun-sheng, ZHANG Fu-cang, LI Zhi-jun, FAN Jun-liang. A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2248-2270.
[4] XIE Lei, QIN Jiang-tao, RAO Lin, CUI Deng-shuai, TANG Xi, XIAO Shi-jun, ZHANG Zhi-yan, HUANG Lu-sheng. Effects of carcass weight, sex and breed composition on meat cuts and carcass trait in finishing pigs[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1489-1501.
[5] LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou. Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2675-2690.
[6] WANG Kai, WU Ping-xian, WANG Shu-jie, JI Xiang, CHEN Dong, JIANG An-an, XIAO Wei-hang, JIANG Yan-zhi, ZHU Li, ZENG Yang-shuang, XU Xu, QIU Xiao-tian, LI Ming-zhou, LI Xue-wei, TANG Guo-qing. Epigenome-wide DNA methylation analysis reveals differentially methylation patterns in skeletal muscle between Chinese Chenghua and Qingyu pigs[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1731-1739.
[7] WANG Peng-fei, WANG Ming, SHI Zhi-bin, SUN Zhen-zhao, WEI Li-li, LIU Zai-si, WANG Shi-da, HE Xi-jun, WANG Jing-fei. Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs[J]. >Journal of Integrative Agriculture, 2022, 21(3): 819-825.
[8] TONG Shi-feng, ZHU Mo , XIE Rui , LI Dong-feng , ZHANG Li-fan , LIU Yang.

Genome-wide detection for runs of homozygosity analysis in three pig breeds from Chinese Taihu Basin and Landrace pigs by SLAF-seq data [J]. >Journal of Integrative Agriculture, 2022, 21(11): 3293-3301.

[9] QIAN Li-li, XIE Jing-yi, GAO Ting, CAI Chun-bo, JIANG Sheng-wang, BI Han-fang, XIE Shan-shan, CUI Wen-tao. Targeted myostatin loss-of-function mutation increases type II muscle fibers in Meishan pigs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 188-198.
[10] WU Ping-xian, ZHOU Jie, WANG Kai, CHEN De-juan, YANG Xi-di, LIU Yi-hui, JIANG An-an, SHEN Lin-yuan, JIN Long, XIAO Wei-hang, JIANG Yan-zhi, LI Ming-zhou, ZHU Li, ZENG Yang-shuang, XU Xu, QIU Xiao-tian, LI Xue-wei, TANG Guo-qing. Identifying SNPs associated with birth weight and days to 100 kg traits in Yorkshire pigs based on genotyping-by-sequencing[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2483-2490.
[11] SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2126-2137.
[12] WANG Kai, WU Ping-xian, CHEN De-juan, ZHOU Jie, YANG Xi-di, JIANG An-an, MA Ji-deng, TANG Qian-zi, XIAO Wei-hang, JIANG Yan-zhi, ZHU Li, QIU Xiao-tian, LI Ming-zhou, LI Xue-wei, TANG Guo-qing. Genome-wide scan for selection signatures based on whole-genome re-sequencing in Landrace and Yorkshire pigs[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1898-1906.
[13] ZHANG Zhe, CHEN Zi-tao, DIAO Shu-qi, YE Shao-pan, WANG Jia-ying, GAO Ning, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi. Identifying the complex genetic architecture of growth and fatness traits in a Duroc pig population[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1607-1614.
[14] WANG Xiao-bo, WU Nan, CAI Rui-jie, GENG Wei-na, XU Xiao-yan. Changes in speciation, mobility and bioavailability of Cd, Cr and As during the transformation process of pig manure by black soldier fly larvae (Hermetia illucens)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1157-1166.
[15] DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe. Exploring the genetic features and signatures of selection in South China indigenous pigs[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1359-1371.
No Suggested Reading articles found!