Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 3069-3080    DOI: 10.1016/j.jia.2023.02.034
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Exploring the nano-fungicidal efficacy of green synthesized magnesium oxide nanoparticles (MgO NPs) on the development, physiology, and infection of carrot (Daucus carota L.) with Alternaria leaf blight (ALB): Molecular docking

Lukman AHAMAD1, 2, Azmat ALI KHAN3, Masudulla KHAN1, 4#, Orudzhev FARID5, Mahboob ALAM6#

1 Plant Pathology/Nematology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
2 Regional Plant Quarantine Station, Salt Lake, Kolkata 700097, India
3 Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
4 Botany Section, Women’s College, Aligarh Muslim University, Aligarh 202002, India
5 Amirkhanov Institute of Physics, Dagestan Federal Scientific Center, Russian Academy of Sciences, Makhachkala 367003, Russia
6 Department of Safety Engineering, Dongguk University, Gyeongju-si 780714, Republic of Korea

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this research, green synthesized magnesium oxide nanoparticles (MgO NPs) from lemon fruit extracts and their fungicidal potential was evaluated against Alternaria dauci infection on carrot (Daucus carota L.) under greenhouse conditions.  The scanning and transmission electron microscopy (SEM and TEM) and ultra-violet (UV) visible spectroscopy were used to validate and characterize MgO NPs.  The crystalline nature of MgONPs was determined using selected area electron diffraction (SAED).  MgO NPs triggered substantial antifungal activity against Adauci when exposed to 50 and 100 mg L–1 concentrations but the higher antifungal potential was noticed in 100 mg L–1 under in-vitro conditions.  In fungal inoculated plants, a marked decrease in growth, photosynthetic pigments, and an increase in phenol, proline contents, and defense-related enzymes of carrot were seen over control (distilled water).  However, foliar application of MgO NPs at 50 and 100 mg L–1 resulted in significant improvement of plant growth, photosynthetic pigments, phenol and proline contents, and defense enzymes activity of carrots with and without Adauci infection.  Spraying of MgO NPs at 100 mg L–1 had more plant length (17.11%), shoot dry weight (34.38%), plant fresh weight (20.46%), and root dry weight (49.09%) in carrots when challenged with A. dauci over inoculated control.  The leaf blight indices and percent disease severity were also reduced in Adauci inoculated plants when sprayed with MgO NPs.  The non-bonding interactions of Alternaria genus protein with nanoparticles were studied using molecular docking.

Keywords:  green synthesis        MgO nanoparticles        alternaria leaf blight        photosynthetic pigments        defense enzymes        carrot  
Received: 05 December 2022   Accepted: 05 February 2023
Fund: This work was funded by the Researchers Supporting Project Number (RSP2023R339) at King Saud University, Riyadh, Saudi Arabia.
About author:  #Correspondence Masudulla Khan, E-mail: masudkhann@gmail.com; Mahboob Alam, E-mail: mahboobchem@gmail.com

Cite this article: 

Lukman AHAMAD, Azmat ALI KHAN, Masudulla KHAN, Orudzhev FARID, Mahboob ALAM. 2023. Exploring the nano-fungicidal efficacy of green synthesized magnesium oxide nanoparticles (MgO NPs) on the development, physiology, and infection of carrot (Daucus carota L.) with Alternaria leaf blight (ALB): Molecular docking. Journal of Integrative Agriculture, 22(10): 3069-3080.

Abdallah Y, Hussien M, Omar M O, Elashmony R, Alkhalifah D H M, Hozzein W N. 2022. Mung bean (Vigna radiata) treated with magnesium nanoparticles and its impact on soilborne Fusarium solani and Fusarium oxysporumin clay soil. Plants11, 1514.

Abdel-Aziz M M, EmamT M, Elsherbiny E A. 2020. Bioactivity of magnesium oxide nanoparticles synthesized from cell filtrate of endobacterium Burkholde riarinojensis against Fusarium oxysporumMaterials Science and Engineering (C), 109, 110617.

Abdel-Halim K Y, El-GhanamA A. 2019. Antifungal potent of some metallic nanoparticles against Sclerotinia sclerotiorum on common bean plants: An emphasis for biochemical alterations and metal accumulation. Academic Journal of Life Sciences5, 93–106.

Abhinaya S, Kavitha H P, Prakash M, Muthukrishnaraj A. 2021. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustainable Chemistry and Pharmacy19, 100368.

Ahmad L, Siddiqui Z. 2019. Effect of different inoculum levels of Meloidogyne incognitaAlternaria dauci and Rhizoctoniasolani on the growth, chlorophyll and carotenoid content and disease progression of carrot (Daucus carota L.). Acta Phytopathologicaet Entomologica Hungarica54, 211–220.

Azam M, Sahoo P K, Mohapatra R K, Kumar M, Ansari A, Moon I S, Chutia A, AlResayes S I, Biswal S K. 2022. Structural investigations, Hirsfeld surface analyses, and molecular docking studies of a phenoxo-bridged binuclear Zinc(II) complex. Journal of Molecular Structure1251, 132039.

Barash I, Mor H, Netzer D, Kashman Y. 1981. Production of zinniol by Alternaria dauci and its phytotoxic effect on carrot. Physiological Plant Pathology19, 7–16.

Bates L S, Waldren R P, Teare I. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil39, 205–207.

Çakmak S, Kansiz S, Azam M, Ersanlı C C, İdil Ö, Veyisoğlu A, Yakan H, Kütük H, Chutia A. 2022a. Synthesis, structural investigation, hirshfeld surface analysis, and biological evaluation of N-(3-cyanothiophen-2-yl)-2-(thiophen-2-yl) acetamide. ACS Omega7, 11320–11329.

Çakmak S, Kansiz S, Azam M, Veyisoglu A, Yakan H, Min K. 2022b. Synthesis, spectroscopic characterization, single-crystal structure, hirshfeld surface analysis, and antimicrobial studies of 3-acetoxy-2-methylbenzoic anhydride. ACS Omega7, 17192–17201.

Chance B, Maehly A. 1955. Assay of catalases and peroxidases. Methods in Enzymology2, 764–775.

Chen J, Wu L, Lu M, Lu S, Li Z, Ding W. 2020. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Frontiers in Microbiology11, 365.

Chen J N, Wu L T, Kun S O N G, Zhu Y S, Ding W. 2022. Nonphytotoxic copper oxide nanoparticles are powerful “nanoweapons” that trigger resistance in tobacco against the soil-borne fungal pathogen Phytophthora nicotianaeJournal of Integrative Agriculture21, 3245–3262.

Chen M, Felmy A R, Dixon D A. 2014. Structure and stabilities of (MgO)n nanoclusters. Journal of Physical Chemistry (A), 118, 3136–3146.

Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment, Release. 2017. Dassault Systèmes. San Diego, CA, USA.

El-Argawy E, Rahhal M, El-Korany A, Elshabrawy E, Eltahan, R. 2017. Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Behiera Governorate. Asian Journal of Plant Pathology11, 35–47.

Ismail A M, El-Gawad A, Mona E. 2021. Antifungal activity of MgO and ZnO nanoparticles against powdery mildew of pepper under greenhouse conditions. Egyptian Journal of Agricultural Research99, 421–434.

Jeevanandam J, Chan Y S, Danquah M K. 2017. Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. New Journal of Chemistry41, 2800–2814.

Kah M, Tufenkji N, White J C. 2019. Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology14, 532–540.

Kamel S M, Elgobashy S F, Omara R I, Derbalah A S, Abdelfatah M, El-Shaer A, Al-Askar A A, Abdelkhalek A, Abd-Elsalam K A, Essa T, Kamran M, Elsharkawy M M. 2022. Antifungal activity of copper oxide nanoparticles against root rot disease in cucumber. Journal of Fungi8, 911.

Kanjana D. 2020. Foliar application of magnesium oxide nanoparticles on nutrient element concentrations, growth, physiological, and yield parameters of cotton. Journal of Plant Nutrition43, 3035–3049.

Kaur M, Sharma H, Bala J. 2012. Kinetic changes in quality attributes of stored carrot–pineapple blended juice. Indian Food Packer66, 32–43.

Kaur S, Samota M K, Choudhary M, Choudhary M, Pandey A K, Sharma A, Thakur J. 2022. How do plants defend themselves against pathogens - Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants28, 485–504.

Kumari S, Khan S. 2017. Synthesis and applications of nanofungicides: A next-generation fungicide. In: Fungal Nanotechnology. Springer, Singapore. pp. 103–118.

Lecomte M. 2013. Analysis of carrot (Daucuscarota) defense mechanisms against the pathogenic fungus Alternariadauci, causing Alternaria leaf blight. PhD thesis, the University of Angers, France. p. 155.

Mackinney G. 1941. Absorption of light by chlorophyll solutions. Journal of Biological Chemistry140, 315–322.

Mayer A, Harel E, Ben-Shaul R. 1966. Assay of catechol oxidase - A critical comparison of methods. Phytochemistry5, 783–789.

Nesha R, Siddiqui Z A. 2013. Interactions of Pectobacterium carotovorum pv. carotovorumXanthomonas campestris pv. carotae, and Meloidogyne javanica on the disease complex of carrot. International Journal of Vegetable Science19, 403–411.

Rajna S, Paschapur A. 2019. Nanopesticides: Its scope and utility in pest management. Indian Farmer6, 17–21.

Riker A, Riker R S. 1936. Introduction to Research on Plant Diseases. John S. Swift, New York.

Rogers P M, Stevenson W R, Wyman J A, Frost K, Groves R. 2011. IPM Perspectives for Carrot Foliage Diseases in Wisconsin. University of Wisconsin Extension Bulletin No. A3945. Madison, WI.

Rubatzky V E, Quiros C F, Simon P W. 1999. Carrots and Related Vegetable Umbelliferae. Commonwealth Agricultural Bureaux International Publishing, UK.

Siddiqui Z A, Parveen A, Ahmad L, Hashem A. 2019. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae249, 374–382.

Singleton V L, Rossi J A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture16, 144–158.

Sneath P H, Sokal R R. 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. 1st ed. W. H. Freeman, San Francisco.

Strandberg J O. 1992. Alternaria species that attack vegetable crops: Biology and options for disease management. In: Chelkowski J, Visconti A, eds., Alternaria Biology, Plant Diseases and Metabolites. Elsevier Science Publishers, Amsterdam. pp. 367–398.

Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N. 2014. Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnology8, 133–137.

Tahvonen R. 1978. Seed-borne fungi on parsley and carrot seed in Finland. Journal of the Scientific Agricultural Society of Finland50, 91–102.

Tanumihardjo S A. 2011. Vitamin A: Biomarkers of nutrition for development. The American Journal of Clinical Nutrition94, 658S–665S.

Thakker J N, Patel S, Dhandhukia P C. 2013. Induction of defense-related enzymes in banana plants: Effect of live and dead pathogenic strain of Fusarium oxysporum f. sp. cubense. International Scholarly Research Notices Biotechnology2013, 601303.

Wani A, Shah M. 2012. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. Journal of Applied Pharmaceutical Science2, 40–44.

Wang Z L, Zhang X, Fan G J, Que Y, Xue F, Liu Y H. 2022. Toxicity effects and mechanisms of MgO nanoparticles on the oomycete pathogen Phytophthora infestans and its host Solanum tuberosumToxics10, 553.

Yusof E N M, Azam M, Sirat S S, Ravoof T B S A, Page A J, Veerakumarasivam A, Karunakaran T, Razali M. 2022. Dithiocarbazate ligand-based Cu(II), Ni(II), and Zn(II) complexes: Synthesis, structural investigations, cytotoxicity, DNA binding, and molecular docking studies. Bioinorganic Chemistry and Applications2022, 2004052.

No related articles found!
No Suggested Reading articles found!