Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2248-2270    DOI: 10.1016/j.jia.2023.02.022
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery
LIAO Zhen-qi1, DAI Yu-long1, WANG Han1, Quirine M. KETTERINGS2, LU Jun-sheng1, ZHANG Fu-cang1, LI Zhi-jun1, FAN Jun-liang1#

1 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest A&F University, Yangling 712100, P.R.China 

2 Department of Animal Science, Cornell University, Ithaca, NY 14853, USA

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

准确、快速地估算作物冠层氮含量(CNC)是精准农业中优化氮肥施用的关键。田间取样测定叶片面积指数(leaf area indexLAI、冠层光合色素(CPP:包括叶绿素a、叶绿素b和类胡萝卜素和叶片氮浓度(leaf nitrogen concentrationLNC费时费力。本文评估了利用高精度无人机多光谱影像估算冬小麦全生育期LAICPPCNC。选取23个光谱特征(5个原始光谱波段、17个植被指数和RGB图像的灰度值8个纹理特征对比度、熵、方差、均值、同质性、相异性、二阶矩、相关性作为模型的输入比较了多元逐步回归(MSR)、支持向量回归(SVR)、梯度提升决策树(GBDT)、高斯过程回归(GPR)、反向传播神经网络(BPNN)和径向基函数神经网络(RBFNN)6种机器学习方法反演冬小麦LAICPPCNC的效果。特别提出了一种基于LAICPP的双层结构模型来估算CNC研究结果表明,与仅输入SFs相比,SFs + TFs组合输入大大提高了冬小麦LAICPPCNC估算精度。RBFNNBPNN模型在估算冬小麦LAICPPCNC方面优于其他机器学习模型。提出的双层模型R2=0.67–0.89 , RMSE=13.63–23.71 mg g-1 , MAE = 10.75–7.59 mg g -1在估算冬小麦CNC时优于传统的直接反演模型R2=0.61–0.80 , RMSE=18.01–25.12 mg g-1 , MAE = 12.96–18.88 mg g -1。以SFs + TFs作为输入的双层RBFNN模型在估算冬小麦CNC时精度最高( R2=0.89 , RMSE= 13.63 mg g-1 , MAE=10.75 mg g-1)。本研究可为田间准确、快速地估测冬小麦冠层氮素含量提供指导。

Abstract  The accurate and rapid estimation of canopy nitrogen content (CNC) in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture. However, the determination of CNC from field sampling data for leaf area index (LAI), canopy photosynthetic pigments (CPP; including chlorophyll a, chlorophyll b and carotenoids) and leaf nitrogen concentration (LNC) can be time-consuming and costly. Here we evaluated the use of high-precision unmanned aerial vehicle (UAV) multispectral imagery for estimating the LAI, CPP and CNC of winter wheat over the whole growth period. A total of 23 spectral features (SFs; five original spectrum bands, 17 vegetation indices and the gray scale of the RGB image) and eight texture features (TFs; contrast, entropy, variance, mean, homogeneity, dissimilarity, second moment, and correlation) were selected as inputs for the models. Six machine learning methods, i.e., multiple stepwise regression (MSR), support vector regression (SVR), gradient boosting decision tree (GBDT), Gaussian process regression (GPR), back propagation neural network (BPNN) and radial basis function neural network (RBFNN), were compared for the retrieval of winter wheat LAI, CPP and CNC values, and a double-layer model was proposed for estimating CNC based on LAI and CPP. The results showed that the inversion of winter wheat LAI, CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs. The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI, CPP and CNC. The proposed double-layer models (R2=0.67–0.89, RMSE=13.63–23.71 mg g–1, MAE=10.75–17.59 mg g–1) performed better than the direct inversion models (R2=0.61– 0.80, RMSE=18.01–25.12 mg g–1, MAE=12.96–18.88 mg g–1) in estimating winter wheat CNC. The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs (R2=0.89, RMSE=13.63 mg g–1, MAE=10.75 mg g–1). The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.
Keywords:  UAV multispectral imagery        spectral features        texture features        canopy photosynthetic pigment content        canopy nitrogen content  
Received: 08 September 2022   Accepted: 20 November 2022
Fund: This study was funded by the Key Research and Development Program of Shaanxi Province of China (2022NY-063) and the Chinese Universities Scientific Fund (2452020018).
About author:  LIAO Zhen-qi, E-mail:; #Correspondence FAN Jun-liang, E-mail:

Cite this article: 

LIAO Zhen-qi, DAI Yu-long, WANG Han, Quirine M. KETTERINGS, LU Jun-sheng, ZHANG Fu-cang, LI Zhi-jun, FAN Jun-liang. 2023. A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery. Journal of Integrative Agriculture, 22(7): 2248-2270.

Al-Ghzawi A L A, Khalaf Y B, Al-Ajlouni Z I, AL-Quraan N A, AL-Quraan I, Hani N B. 2018. The effect of supplemental irrigation on canopy temperature depression, chlorophyll content, and water use efficiency in three wheat (Triticum aestivum L. and Tdurum Desf.) varieties grown in dry regions of Jordan. Agriculture8, 67.

Ali A M. 2020. Using hand-held chlorophyll meters and canopy reflectance sensors for fertilizer nitrogen management in cereals in small farms in developing countries. Sensors20, 1127.

Atzberger C, Guérif M, Baret F, Werner W. 2010. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Computers and Electronics in Agriculture73, 165–173.

Barnes E M, Clarke T R, Richards S E, Colaizzi P D, Haberland J, Kostrzewski M, Waller P, Choi C, Riley E, Thompson T, Lascano R J, Li H, Moran M S. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In: Proceedings of the Fifth International Conference on Precision Agriculture.Bloomington, MN, USA. Precision Agriculture Center, University of Minnesota, Madison, WI.

Bausch W C, Duke H R. 1996. Remote sensing of plant nitrogen status in corn. Transactions of the ASAE39, 1869–1875.

Broge N H, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment76, 156–172.

Camps-Valls G, Verrelst J, Munoz-Mari J, Laparra V, Mateo-Jimenez F, Gomez-Dans J. 2016. A survey on Gaussian processes for earth-observation data analysis: A comprehensive investigation. IEEE Geoscience and Remote Sensing Magazine4, 58–78.

Cen H Y, Wan L, Zhu J P, Li Y J, Li X R, Zhu Y M, Weng H Y, Wu W K, Yin W X, Xu C, Bao Y D, Feng L, Shou J S, He Y. 2019. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Plant Methods15, 32.

Chakhvashvili E, Siegmann B, Muller O, Verrelst J, Bendig J, Kraska T, Rascher U. 2022. Retrieval of crop variables from proximal multispectral UAV image data using PROSAIL in maize canopy. Remote Sensing14, 1247.

Chen J M. 1996. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing22, 229–242.

Chou S, Chen B, Chen J, Wang M M, Wang S Q, Croft H, Shi Q. 2020. Estimation of leaf photosynthetic capacity from the photochemical reflectance index and leaf pigments. Ecological Indicators110, 105867.

Clevers J G P W, Gitelson A A. 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation23, 344–351.

Cui B, Zhao Q J, Huang W J, Song X Y, Ye H C, Zhou X F. 2019. A new integrated vegetation index for the estimation of winter wheat leaf chlorophyll content. Remote Sensing11, 974.

Duan B, Liu Y, Gong Y, Peng Y, Wu X T, Zhu R S, Fang S H. 2019. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image. Plant Methods, 15, 112.

Fang H, Liu F L, Gu X B, Chen P P, Li Y P, Li Y N. 2022. The effect of source-sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization. Agricultural Water Management267, 107616.

Feng W, Guo B B, Wang Z J, He L, Song X, Wang Y H, Guo T C. 2014. Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data. Field Crops Research159, 43–52.

Frels K, Guttieri M, Joyce B, Leavittc B, Baenzigera S. 2018. Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat. Field Crops Research217, 82–92.

Fu W, Fan J, Hao M D, Hu J S, Wang H. 2021. Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China. Agricultural Water Management244, 106550.

Fu Y Y, Yang G J, Li Z H, Song X Y, Li Z H, Xu X G, Wang P, Zhao C J. 2020. Winter wheat nitrogen status estimation using UAV-based RGB imagery and gaussian processes regression. Remote Sensing12, 3778.

Geipel J, Link J, Wirwahn J A, Claupein W2016. A programmable aerial multispectral camera system for in-season crop biomass and nitrogen content estimation. Agriculture6, 4.

Gitelson A A, Kaufman Y J, Merzlyak M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment58, 289–298.

Gitelson A A, Peng Y, Arkebauer T J, Schepers J. 2014. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sensing of Environment144, 65–72.

Gu X, Cai H, Chen P, Li Y P, Fang H, Li Y N. 2021. Ridge-furrow film mulching improves water and nitrogen use efficiencies under reduced irrigation and nitrogen applications in wheat field. Field Crops Research270, 108214.

Haboudane D, Miller J R, Pattey E, Zarco-Tejada P, Strachane I B. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment90, 337–352.

Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment81, 416–426.

He H, Yan Y, Chen T, Cheng P G. 2019. Tree height estimation of forest plantation in mountainous terrain from bare-earth points using a DoG-coupled radial basis function neural network. Remote Sensing11, 1271.

Hlatshwayo S T, Mutanga O, Lottering R T, Kiala Z, Ismail R. 2019. Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery. International Journal of Applied Earth Observation and Geoinformation74, 65–77.

Hosgood B, Jacquemoud S, Verdebout J, Andreoli G, Pedrini G, Schmuck G. 1995Leaf Optical Properties Experiment 93 (LOPEX93). European Commission, Ispra, Italy.

Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment83, 195213.

Jin X, Yang G, Xu X, Yang H, Feng H K, Li Z H, Shen J X, Lan Y B, Zhao C J. 2015. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing7, 1325113272.

Kanan C, Cottrell G W. 2012Color-to-grayscale: does the method matter in image recognition? PLoS ONE7, e29740.

Kopačková-Strnadová V, Koucká L, Jelének J, Lhotáková Z, Oulehle F. 2021. Canopy top, height and photosynthetic pigment estimation using parrot sequoia multispectral imagery and the unmanned aerial vehicle (UAV). Remote Sensing13, 705.

Kwak G H, Park N W. 2019. Impact of texture information on crop classification with machine learning and UAV images. Applied Sciences9, 643.

Lee H, Wang J, Leblon B. 2020. Using linear regression, Random Forests, and Support Vector Machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sensing12, 2071.

Li Z, Li Z, Fairbairn D, Li N, Xu B, Feng H K, Yang G J. 2019a. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral. Computers and Electronics in Agriculture162, 174–182.

Li Z, Jing Y, Huang P, Dong X H, Wang X, Wei L, Liu Z Y. 2019b. Verification of single red-edge chlorophyll index using multi-spectral image. Southwest China Journal of Agricultural Sciences32, 2796–2801. (in Chinese)

Liao Z Q, Zeng H L, Fan J L, Lai Z L, Zhang C, Zhang F C, Wang H D, Cheng M H, Guo J J, Li Z J, Wu P. 2022a. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agricultural Water Management268, 107688.

Liao Z Q, Zhang K B, Fan J L, Li Z J, Zhang F C, Wang X K, Wang H D, Cheng M H, Zou Y F. 2022b. Ridge-furrow plastic mulching and dense planting with reduced nitrogen improve soil hydrothermal conditions, rainfed soybean yield and economic return in a semi-humid drought-prone region of China. Soil and Tillage Research217, 105291.

Liao Z Q, Zheng J, Fan J L, Pei S Z, Dai Y L, Zhang F C, Li Z J. 2023. Novel models for simulating maize growth based on thermal time and photothermal units: Applications under various mulching practices. Journal of Integrative Agriculture22, 1381–1395.

Liang L, Di L P, Zhang L P, Deng M X, Qin Z H, Zhao S H, Lin H. 2015. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment165, 123–134.

Liu S S, Li L T, Gao W H, Zhang Y K, Liu Y N, Wang S Q, Lu J W. 2018. Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Computers and Electronics in Agriculture151, 185–195.

Liu Z, Guo P, Liu H, Fan P, Zeng P Z, Liu X Y, Feng C, Wang W, Yang F Z. 2021. Gradient boosting estimation of the leaf area index of apple orchards in UAV remote sensing. Remote Sensing13, 3263.

Lou P Q, Fu B L, He H C, Chen J J, Wu T H, Lin X C, Liu L L, Fan D L, Deng T F. 2021. An effective method for canopy chlorophyll content estimation of marsh vegetation based on multiscale remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing14, 53115–5325.

Louhaichi M, Borman M M, Johnson D E. 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International16, 65–70.

Luo P, Liao J, Shen G. 2020. Combining spectral and texture features for estimating leaf area index and biomass of maize using Sentinel-1/2, and Landsat-8 data. IEEE Access85361453626.

Ma Q, Wang M, Zheng G, Yao Y, Tao T T, Zhu M, Ding J F, Li C Y, Guo W S, Zhu X K. 2021. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Research267, 108163.

Maimaitijiang M, Ghulam A, Sidike P, Hartling S, Maimaitiyiming M, Peterson K, Shavers K, Fishman J, Peterson J, Kadam S, Burken J, Fritsch F. 2017. Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS Journal of Photogrammetry and Remote Sensing134, 43–58.

Padilla F M, Gallardo M, Peña-Fleitas M T, De Souza R, Thompson R B. 2018. Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors18, 2083.

Palka M, Manschadi A M, Koppensteiner L, Neubauer T, Fitzgerald G J. 2021. Evaluating the performance of the CCCI-CNI index for estimating N status of winter wheat. European Journal of Agronomy130, 126346.

Pearson R L, Miller L D. 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sensing of EnvironmentVIII, 1355.

Peng J F, Feng Y H, Wang X K, Jie L, Xu G L, Phonenasay S, Luo Q X, Han Z L, Lu W. 2021. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations. Scientific Reports11, 1–10.

Peñuelas J, Gamon J A, Fredeen A L, Field C B. 1994. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sensing of Environment48, 135–146.

Pu R, Cheng J. 2015. Mapping forest leaf area index using reflectance and textural information derived from WorldView-2 imagery in a mixed natural forest area in Florida, US. International Journal of Applied Earth Observation and Geoinformation42, 11–23.

Qiu Z, Ma F, Li Z, Xu X B, Ge H X, Du C W. 2021. Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms. Computers and Electronics in Agriculture189, 106421.

Revill A, Myrgiotis V, Florence A, Hoad S, Rees R, MacArthur A, Williams M. 2021. Combining process modelling and LAI observations to diagnose winter wheat nitrogen status and forecast yield. Agronomy11, 314.

Richardson A J, Wiegand C L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing43, 1541–1552.

Rivera J P, Verrelst J, Leoneko G, Moreno J. 2013. Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sensing5, 3280–3304.

Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment55, 95–107.

Rouse J W, Haas J R H, Schell J A, Freden D W. 1974. Monitoring vegetation systemsin the Great Plains with ERTS. In: Proceedings of the 3rd ERTS Symposium.Washington, D.C., USA. National Aeronautics and Space Administration, USA.

Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schüler G. 2010. Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation12, 17–26.

Shafiee S, Lied L M, Burud I, Jon A D, Alsheikh M, Lillemo M. 2021. Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery. Computers and Electronics in Agriculture183, 106036.

Shi R, Zhang Y, Chen X. 2010Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science51, 165–170.

Sigua G C, Stone K C, Bauer P J, Szogi A A. 2018. Biomass and nitrogen use efficiency of grain sorghum with nitrogen and supplemental irrigation. Agronomy Journal110, 1119–1127.

Song Y, Wang J, Shang J, Liao C H. 2020. Using UAV-based SOPC derived LAI and SAFY model for biomass and yield estimation of winter wheat. Remote Sensing12, 2378.

Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research (Atmospheres), 106, 7183–7192.

Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J. 2011, Retrieval of vegetation biophysical parameters using gaussian process techniques. IEEE Transactions on Geoscience and Remote Sensing50, 1832–1843.

Verrelst J, Rivera J P, Leoneko G, Alonso L, Moreno J. 2014. Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from Sentinel-2 and -3 data: Role of cost functions. IEEE Transactions on Geoscience and Remote Sensing52, 257–269.

Verrelst J, Romijn E, Kooistra L. 2012. Mapping vegetation structure in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote Sensing4, 2866–2889,

Wang X X, Lu X P, Yang Z N, Gao Z, Wang L, Zhang B W. 2022. A Method for retrieving leaf area index of winter wheat by combining PROSAIL model with VMG model. Transactions of the Chinese Society for Agricultural Machinery53, 209–206. (in Chinese)

Woo D K, Riley W J, Wu Y. 2020. More fertilizer and impoverished roots required for improving wheat yields and profits under climate change. Field Crops Research249, 107756.

Wu S, Yang P, Ren J, Chen Z X, Liu C G, Li H. 2020. Winter wheat LAI inversion considering morphological characteristics at different growth stages coupled with microwave scattering model and canopy simulation model. Remote Sensing of Environment240, 111681.

Wulder M A, LeDrew E F, Franklin S E, Lavigne M. 1998. Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI). Remote Sensing of Environment64, 64–76.

Xiong X, Chang L, Khalid M, Zhang J J, Huang D F. 2018. Alleviation of drought stress by nitrogen application in Brassica campestris ssp. Chinensis L. Agronomy8, 66.

Yan S C, Wu Y, Fan J L, Zhang F C, Guo J J, Zheng J, Wu L F. 2022. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. Agricultural Water Management261, 107380.

Yang B H, Wang M X, Sha Z X, Wang B, Chen J J, Yao X, Cheng T, Cao W X, Zhu Y. 2019. Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles. Sensors19, 4416.

Yang G J, Liu J G, Zhao C J, Li Z H, Huang Y B, Yu H Y, Xu B, Yang X B, Zhu D M, Zhang X Y, Zhang R Y, Feng H K, Zhao X Q, Li Z H, Li H L, Yang H. 2017. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers in Plant Science8, 1111.

Yao X, Wang N, Liu Y, Cheng T, Tian Y T, Chen Q, Zhu Y. 2017. Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery. Remote Sensing9, 1304.

Yue J B, Yang G J, Tian Q J, Feng H K, Xu K J, Zhou C Q. 2019. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing150, 226–244.

Zha H N, Miao Y X, Wang T T, Li Y, Zhang J, Sun W C, Feng Z Q, Kusnierek K. 2020. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing12, 215.

Zhai L, Wan L, Sun D, Abdalla A, Zhu Y M, Li X R, He Y, Cen H Y. 2021. Stability evaluation of the PROSPECT model for leaf chlorophyll content retrieval. International Journal of Agricultural and Biological Engineering14, 189–198.

Zhang J, Gao D, Song D, Qiao L, Sun H, Li Z M, Li L. 2022. Wavelengths optimization and chlorophyll content detection based on ROSPECT model. Spectroscopy and Spectral Analysis42, 1514–1521. (in Chinese)

Zhang J Y, Qiu X L, Wu Y T, Zhu Y, Cao Q, Liu X J, Cao W X. 2021. Combining texture, color, and vegetation indices from fixed-wing UAS ssimagery to estimate wheat growth parameters using multivariate regression methods. Computers and Electronics in Agriculture185, 106138.

Zhang X, Zhang K, Sun Y, Zhang K F, Sun Y Q, Zhao Y D, Zhuang H F, Ban W, Chen Y, Fu E J, Chen S, Liu J X, Hao Y M. 2022. Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Remote Sensing14, 331.

Zheng H, Li W, Jiang J, Liu Y, Cheng T, Tian Y C, Zhu Y, Cao W X, Zhang Y, Yao X. 2018. A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing10, 2026.

Zhou Y C, Lao C C, Yang Y L, Zhang Z T, Chen H Y, Chen Y W, Chen J Y, Ning J F, Yang N. 2021. Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices. Agricultural Water Management256, 107076.

No related articles found!
No Suggested Reading articles found!