Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (7): 1541-1546    DOI: 10.1016/S2095-3119(19)62635-3
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Assignment of unanchored scaffolds in genome of Brassica napus by RNA-seq analysis in a complete set of Brassica rapa-Brassica oleracea monosomic addition lines
HUO Dong-ao*, ZHU Bin*, TIAN Gui-fu, DU Xu-ye, GUO Juan, CAI Meng-xian
School of Life Sciences, Buckwheat Research Center, Guizhou Normal University, Guiyang 550025, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The economically valuable oil crop Brassica napus (AACC, 2n=38), which arose from interspecific hybridization between the diploid ancestors Brassica rapa (AA, 2n=20) and Brassica oleracea (CC, 2n=18), has a complex genome.  More than 10% of the assembled sequences, most of which belong to the C subgenome, have not been anchored to the corresponding chromosome.  Previously, a complete set of monosomic alien addition lines (MAALs, C1–C9) with each of the nine C-subgenome chromosomes added to the extracted A subgenome was obtained from the allotetraploid B. napus donor Oro, after the ancestral B. rapa (RBR Oro) genome was restored.  These MAALs effectively reduced the complexity of the B. napus genome.  Here, we determined the expression values of genes on unanchored scaffolds in the MAALs and RBR Oro.  Then, multiple comparisons of these gene expression values were used to determine the affiliations of the non-anchored scaffolds on which the genes were located.  In total, 54.68% (44.11 Mb) of the 80.67 Mb of non-anchored scaffolds belonging to the C subgenome were assigned to corresponding C chromosomes.  This work highlights the potential value of these MAALs in improving the genome quality of B. napus.
 
Keywords:  Brassica napus        genome sequence        RNA-seq        monosomic alien addition lines        scaffolds  
Received: 21 September 2018   Online: 23 January 2019   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31801391), the Doctoral Foundation of Guizhou Normal University, China (11904-0517061 and 11904-0517054), the Project for Young Growth of Education Department of Guizhou Province, China (GPED, qianjiaoheKYzi[2017]127), and the Collaborative Fund of Guizhou Science and Technology, China (QKHLHZ[2017]7356 and [2012]21).
Corresponding Authors:  Correspondence CAI Meng-xian, Tel: +86-851-83227351, E-mail: caimengxian@126.com   
About author:  * These authors contributed equally to this study.

Cite this article: 

HUO Dong-ao, ZHU Bin, TIAN Gui-fu, DU Xu-ye, GUO Juan, CAI Meng-xian. 2019. Assignment of unanchored scaffolds in genome of Brassica napus by RNA-seq analysis in a complete set of Brassica rapa-Brassica oleracea monosomic addition lines. Journal of Integrative Agriculture, 18(7): 1541-1546.

Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, et al. 2000. The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195.
AGI (Arabidopsis Genome Initiative). 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815.
Alvarez-Cubero M J, Santiago O, Martínez-Labarga C, Martínez-García B, Marrero-Díaz B, Rubio-Roldan A, Pérez-Gutiérrez A M, Carmona-Saez P, Lorente J A, Martinez-Gonzalez L J. 2018. Methodology for Y Chromosome Capture: A complete genome sequence of  Y chromosome using flow cytometry, laser microdissection and magnetic streptavidin-beads. Scientific Reports, 8, 1–13.
Bayer P E, Hurgobin B, Golicz A A, Chan C K K, Yuan Y X , Lee H T, Renton M, Meng J L, Li R Y, Long Y, Zou J, Bancroft L, Chalhoub B, King G J, Batley J, Edwards D. 2017. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnology Journal, 15, 1602–1610.
Bleidorn C. 2015. Third generation sequencing: Technology and its potential impact on evolutionary biodiversity research. Systematics and Biodiversity, 14, 1–8.
Chain P S G, Grafham D V, Fulton R S, Fitzgerald M G, Hostetler J, Muzny D, Ali J, Birren B, Bruce D C, Buhay C, Cole J R, Ding Y, Dugan S, Field D, Garrity G M, Gibbs R, Graves T, Han C S, Harrison S H, Highlander S, et al. 2009. Genome project standards in a new era of sequencing. Science, 326, 236–237.
Chalhoub B, Denoeud F, Liu S, Parkin I P, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Sanans B, Corréa M, Silva C D, Just J, Falentin C, Koh C S, Clainche I L, Bernard M, Bento P, Noel B, Labadie K, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 345, 950–953.
Chang S B, Jong H D. 2005. Production of alien chromosome additions and their utility in plant genetics. Cytogenetic and Genome Research, 109, 335–343.
Henry I M, Dilkes B P, Miller E S, Burkart-Waco D, Comai L. 2010. Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics, 186, 1231–1245.
Huettel B, Kreil D P, Matzke M, Matzke A J. 2008. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genetics, 4, e1000226.
IWGSC (International Wheat Genome Sequencing Consortium). 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788.
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, et al. 2015. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 33, 524–530.
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang X, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, et al. 2014. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 46, 567–572.
Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I P, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft L, Yang T J, Hu Q, Yue Z, Li H, Yang L, et al. 2014. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 5, 3930.
Lysak M A, Koch M A, Pecinka A, Schubert I. 2005. Chromosome triplication found across the tribe Brassiceae. Genome Research, 15, 516–525.
Malone J H, Cho D Y, Mattiuzzo N R, Artieri C G, Jiang L, Dale R K, Smith H E, McDaniel J, Munro S, Salit M, Andrews J, Przytycka T M, Oliver B. 2012. Mediation of Drosophila autosomal dosage effects and compensation by network interactions. Genome Biology, 13, 1–17.
Niemeyer H M, Jerez J M. 1997. Chromosomal location of genes for hydroxamic acid accumulation in Triticum aestivum L. (wheat) using wheat aneuploids and wheat substitution lines. Heredity, 79, 10–14.
Oliver S G, van der Aart Q J M, Agostoni-carbone M L, Aigle M, Alberghina L, Alexandraki D, Antoine G, Anwar R, Ballesta J P G, Benit P, Berben G, Bergantino E, Biteau N, Bolle P A, Bolotin-Fukuhara M, Brown A, Brown A J P, Buhler J M, Carcano C, Carignani G, et al. 1992. The complete DNA sequence of yeast chromosome III. Nature, 357, 38–46.
Sachidanandam R, Weissman D, Schmidt S C, Kakol J M, Stein L D, Marth G, Sherry S, Mullikin J C, Mortimore B J, Willey D L, Hunt S E, Cole C G, Coggill P C, Rice C M, Ning Z, Rogers J, Bentley D R, Kwok P Y, Mardis E R, Yeh R T, Schultz B, et al. 2001. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 409, 928–933.
Sears E R. 1954. The Aneuploids of Common Wheat. Research Bulletin No. 572. University of Missouri, College of Agriculture, Agricultural Experiment Station, Columbia, MO.
Trapnell C, Hendrickson D G, Sauvageau M, Goff L, Rinn J L, Pachter L. 2012. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 31, 46–53.
Truco M J, Hu J, Sadowski J, Quiros C F. 1996. Inter-and intra-genomic homology of the Brassica genomes: Implications for their origin and evolution. Theoretical and Applied Genetics, 93, 1225–1233.
Tu Y Q, Sun J, Ge X H, Li Z Y. 2010. Production and genetic analysis of partial hybrids from intertribal sexual crosses between Brassica napus and Isatis indigotica and progenies. Genome, 53, 146–156.
Wang J, Lydiate D J, Parkin I A, Falentin C, Delourme R, Carion P W, King G J. 2011. Integration of linkage maps for the amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics, 12, 101.
Wu J, Lin L, Xu M L, Chen P, Liu D X, Sun Q F, Ran L P, Wang Y P. 2018. Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus. BMC Genomics, 19, 586.
Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie S A, Zhang M. 2016. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics, 48, 1225–1232.
Zhang A, Li N, Gong L, Gou X, Wang B, Deng X, Li C, Dong Q, Zhang H, Liu B. 2017. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat. Plant Physiology, 175, 828–847.
Zhang X, Wessler S R. 2004. Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proceedings of the National Academy of Sciences of the United States of America, 101, 5589–5594.
Zhu B, Shao Y, Pan Q, Ge X, Li Z. 2015. Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L. Frontiers in Plant Science, 6, 763.
Zhu B, Tu Y, Zeng P, Ge X, Li Z. 2016. Extraction of the constituent subgenomes of the natural allopolyploid rapeseed (Brassica napus L.). Genetics, 204, 1015–1027.
Ziolkowski P A, Kaczmarek M, Babula D, Sadowski J. 2006. Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. The Plant Journal, 47, 63–74.
Zou J, Hu D, Mason A S, Shen X, Wang X, Wang N. 2017. Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnology Journal, 16, 507–519. 
 
[1] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[2] WANG Jie, ZHANG Qi, Astrid Lissette BARRETO SÁNCHEZ, ZHU Bo, WANG Qiao, ZHENG Mai-qing, LI Qing-he, CUI Huan-xian, WEN Jie, ZHAO Gui-ping. Transcriptome analysis of the spleen of heterophils to lymphocytes ratio-selected chickens revealed their mechanism of differential resistance to Salmonella[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2372-2383.
No Suggested Reading articles found!