|
Araus J L, Cairns J E. 2014. Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19, 52-61.
Campbell M T, Knecht A C, Berger B, Brien C J, Wang D, Walia H. 2015. Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiology 168, 1476-1489.
Colmer J, O'Neill C M, Wells R, Bostrom A, Reynolds D, Websdale D, Shiralagi G, Lu W, Lou Q, Le Cornu T, Ball J, Renema J, Flores Andaluz G, Benjamins R, Penfield S, Zhou J. 2020. SeedGerm: A cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination. New Phytologist, 228, 778-793.
Dong S S, He W M, Ji J J, Zhang C, Guo Y, Yang T L. 2020. LDBlockShow: A fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Briefings in Bioinformatics, 22, 4.
Duan S, Al-Huqail A A, Alsudays I M, Younas M, Aslam A, Shahzad A N, Qayyum M F, Rizwan M, Alhaj Hamoud Y, Shaghaleh H, Hong Yong J W. 2024. Effects of biochar types on seed germination, growth, chlorophyll contents, grain yield, sodium, and potassium uptake by wheat (Triticum aestivum L.) under salt stress. BMC Plant Biology, 24, 487.
Fernandez R, Crabos A, Maillard M, Nacry P, Pradal C. 2022. High-throughput and automatic structural and developmental root phenotyping on Arabidopsis seedlings. Plant Methods, 18, 127.
Furbank R T, Tester M. 2011. Phenomics-technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16, 635-644.
FAO. 2024. Global status of salt-affected soils - Main report. Rome. https://doi.org/10.4060/cd3044en
Gaggion N, Ariel F, Daric V, Lambert É, Legendre S, Roulé T, Camoirano A, Milone D H, Crespi M, Blein T, Ferrante E. 2021. ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture. Gigascience, 10, 7.
Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensi-Rubio J S, Bru R, Olmos E. 2015. New insights into plant salt acclimation: The roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytologist, 205, 216-239.
Genze N, Bharti R, Grieb M, Schultheiss S J, Grimm D G. 2020. Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods, 16, 157.
Guo P, Chong L, Jiao Z, Xu R, Niu Q, Zhu Y. 2025. Salt stress activates the CDK8-AHL10-SUVH2/9 module to dynamically regulate salt tolerance in Arabidopsis. Nature Communications, 16, 2454.
Guo S, Lv L, Zhao Y, Wang J, Lu X, Zhang M, Wang R, Zhang Y, Guo X. 2023. Using high-throughput phenotyping analysis to decipher the phenotypic components and genetic architecture of maize seedling salt tolerance. Genes, 14, 1771.
Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 111, 851.
Hassan M A, Yang M, Fu L, Rasheed A, Zheng B, Xia X, Xiao Y, He Z. 2019. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods, 15, 37.
Hmissi M, Krouma A, García-Sánchez F, Chaieb M. 2024. Potential of seed halopriming in the mitigation of salinity stress during germination and seedling establishment in durum wheat (Triticum durum Desf.). Plants, 13, 66.
Hu Y, Schmidhalter U. 2023. Opportunity and challenges of phenotyping plant salt tolerance. Trends in Plant Science, 28, 552-566.
Li Q, Fan S, Cao J, Sun Z, Zhong C, Min H, Liang S, Wang X, Zhou Q, Cai J, Zhong Y, Huang M, Jiang D. 2025. Mechanisms of the formation of acquired drought tolerance in wheat: Insights from combining high-throughput phenotyping and genome-wide association study. Journal of Experimental Botany, 76, 4154-4170.
Li S, Yu S, Zhang Y, Zhu D, Li F, Chen B, Mei F, Du L, Ding L, Chen L, Song J, Kang Z, Mao H. 2022. Genome-wide association study revealed TaHXK3-2A as a candidate gene controlling stomatal index in wheat seedlings. Plant, Cell & Environment, 45, 2306-2323.
Liu G, Zeng Y, Li B, Wang X, Jiang L, Guo Y. 2025. SOS2 phosphorylates FREE1 to regulate multi-vesicular body trafficking and vacuolar dynamics under salt stress. The Plant Cell, 37, koaf012.
Ma L, Qin D B, Sun L, Zhang K, Yu X, Dang A K, Hou S, Zhao X, Yang Y, Wang Y, Chen Y, Guo Y. 2025. SALT OVERLY SENSITIVE2 and AMMONIUM TRANSPORTER1;1 contribute to plant salt tolerance by maintaining ammonium uptake. The Plant Cell, 37, koaf034.
Ma L, Wang C, Hu Y, Dai W, Liang Z, Zou C, Pan G, Lübberstedt T, Shen Y. 2022. GWAS and transcriptome analysis reveal MADS26 involved in seed germination ability in maize. Theoretical and Applied Genetics, 135, 1717-1730.
Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F. 2021. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 14, 1965-1968.
Masteling R, Voorhoeve L, IJsselmuiden J, Dini-Andreote F, de Boer W, Raaijmakers J M. 2020. DiSCount: Computer vision for automated quantification of Striga seed germination. Plant Methods, 16, 60.
Murphy K M, Ludwig E, Gutierrez J, Gehan M A. 2024. Deep learning in image-based plant phenotyping. Annual Review of Plant Biology, 75, 771-795.
Oyiga B C, Sharma R C, Shen J, Baum M, Ogbonnaya F C, Léon J, Ballvora A. 2016. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. Journal of Agronomy and Crop Science, 202, 472-485.
Quamruzzaman M, Manik S M N, Shabala S, Cao F, Zhou M. 2022. Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. Theoretical and Applied Genetics, 135, 709-721.
Quan X, Liu J, Zhang N, Xie C, Li H, Xia X, He W, Qin Y. 2021. Genome-wide association study uncover the genetic architecture of salt tolerance-related traits in common wheat (Triticum aestivum L.). Frontiers in Genetics, 12, 663941.
Sun D, Robbins K, Morales N, Shu Q, Cen H. 2022. Advances in optical phenotyping of cereal crops. Trends in Plant Science, 27, 191-208.
Sun Z, Song Y, Li Q, Cai J, Wang X, Zhou Q, Huang M, Jiang D. 2021. An integrated method for tacking and monitoring stomata dynamics from microscope videos. Plant Phenomics, 2021, 1-11.
Tao H, Xu S, Tian Y, Li Z, Ge Y, Zhang J, Wang Y, Zhou G, Deng X, Zhang Z, Ding Y, Jiang D, Guo Q, Jin S. 2022. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Communications, 3, 100344.
Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. 2017. Plant phenomics, from sensors to knowledge. Current Biology, 27, R770-R783.
Wang X, Sun J, Yi Z, Dong S. 2025. Effects of seed size on soybean performance: Germination, growth, stress resistance, photosynthesis, and yield. BMC Plant Biology, 25, 219.
Wen Z, Tan R, Zhang S, Collins P J, Yuan J, Du W, Gu C, Ou S, Song Q, An Y Q C, Boyse J F, Chilvers M I, Wang D. 2018. Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnology Journal, 16, 1825-1835.
Xiao Q, Bai X, Zhang C, He Y. 2022. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. Journal of Advanced Research, 35, 215-230.
Xu Y, Bu W, Xu Y, Fei H, Zhu Y, Ahmad I, Nimir N E A, Zhou G, Zhu G. 2024a. Effects of salt stress on physiological and agronomic traits of rice genotypes with contrasting salt tolerance. Plants, 13, 1157.
Xu Y, Weng X, Jiang L, Huang Y, Wu H, Wang K, Li K, Guo X, Zhu G, Zhou G. 2024b. Screening and evaluation of salt-tolerant wheat germplasm based on the main morphological indices at the germination and seedling stages. Plants, 13, 3201.
Yang W, Feng H, Zhang X, Zhang J, Doonan J H, Batchelor W D, Xiong L, Yan J. 2020. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Molecular Plant, 13, 187-214.
Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L. 2014. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communications, 5, 5087.
Yang Z, Gao S, Xiao F, Li G, Ding Y, Guo Q, Paul M J, Liu Z. 2020. Leaf to panicle ratio (LPR): A new physiological trait indicative of source and sink relation in japonica rice based on deep learning. Plant Methods, 16, 117.
Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X. 2021. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 19, 619-628.
Yu S, Wu J, Wang M, Shi W, Xia G, Jia J, Kang Z, Han D. 2020. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. The Crop Journal, 8, 1011-1024.
Zhang G, Zhou J, Peng Y, Tan Z, Zhang Y, Zhao H, Liu D, Liu X, Li L, Yu L, Jin C, Fang S, Shi J, Geng Z, Yang S, Chen G, Liu K, Yang Q, Feng H, Guo L, et al. 2023. High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus. Plant, Cell & Environment, 46, 549-566.
Zhang H, Zhu J, Gong Z, Zhu J K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23, 104-119.
Zhao C, Zhang H, Song C, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1, 100017.
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. 2024. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 51, 16-34.
|