Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Combining cost-effective germination imaging and genome-wide association study to unravel genetic variation of temporal salinity responses in wheat

Qing Li1*, Zhuangzhuang Sun2*, Xiaofang Li3*, Zihan Jing1, Xiaomiao Tian4, Yinchen Zhang3, Yingyin Yao4, Zhen Zhang5, Meng Wang6, Xiao Wang1, Qin Zhou1, Jian Cai1, Yingxin Zhong1, Mei Huang1, Wenliang Wan3#, Jiawei Chen1#, Dong Jiang1, 2, 3#

1 National Technique lnnovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture and Rural Affairs/College of Agriculture, Nanjing Agriculture University, Nanjing 210095. China

2 School of Agronomy, Anhui Agricultural University, Hefei 230036, China

3 Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China 

4 Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China

5 State Key Laboratory of Crop Stress Adaptation and Improvement/The Zhongzhou Laboratory for Integrative Biology/College of Agriculture, School of Life Sciences, Henan University, Kaifeng 475004, China

6 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China 

 Highlights 

l A cost-effective germination phenotyping system for facilitating in situ monitoring of the dynamic germination responses was established.

l A deep learning pipeline to achieve organ segmentation and germination-related trait extraction processes was developed.

l Substantial germination variation in salt sensitivity among wheat varieties was identified, showing no correlation between germination capacity and seed size, and radicle growth rate significantly exceeding that of the coleoptile.

l 429 loci associated with salt stress response during germination were detected.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

盐胁迫是制约全球小麦生产的关键因素,尤其是在种子萌发阶段影响显著。传统萌发期耐盐性评价方法通量低,且难以捕捉动态表型变化。本研究整合侧视RGB成像与图像分析算法,构建了一套低成本、高通量的种子萌发表型鉴定平台,并利用深度学习算法实现了器官级别的小麦萌发图像分割与萌发相关性状的精准提取,进而对多个小麦品种在不同盐浓度下的萌发动态进行系统表型解析。研究表明,器官级分割模型表现优异:平均精确率达89.08%,平均召回率91.65%,像素准确率91.65%,平均交并比(mIoU83.20%;所提取的13项图像衍生性状与人工测量结果高度一致。该研究揭示了盐胁迫显著抑制根系与幼苗的生长,且抑制效应随盐浓度升高而增强,发现了胚根生长速率显著快于胚芽鞘,但种子大小与其萌发能力无显著相关性。基于动态图像提取指标开展的聚类分析将210份小麦材料划分为盐耐受性差异显著的两类。全基因组关联分析(GWAS)共鉴定出429个与萌发期盐胁迫响应显著相关的遗传位点,其中包含一个已被报道参与植物耐盐调控机制的潜在候选基因 TraesCS7A03G007080。综上,本研究不仅为小麦萌发期耐盐品种筛选提供了重要遗传和表型资源,同时建立了一套低成本、高通量、高可靠性的技术体系,为深入解析小麦萌发期耐盐性的遗传基础提供了有力支撑。



Abstract  

Salt stress is a major limiting factor for global wheat production, especially during the germination stage. Traditional methods for evaluating salt resistance at the germination stage are limited by low throughput and their inability to capture dynamic phenotypic changes. In this study, a low-cost and high-throughput seed germination phenotyping platform was developed by integrating side-view RGB imaging with image analysis algorithms. Organ segmentation and germination related traits extraction processes was built via a deep learning pipeline for comprehensive phenotyping of the germination process of diverse varieties under different salt levels. Organ-level segmentation achieved a mean precision of 89.08%, a mean recall of 91.65%, a pixel accuracy of 91.65%, and a mean intersection over union of 83.20%. The 13 image-derived traits were highly consistent with manual measurements. Salt stress significantly inhibited the growth of roots and seedlings, with inhibitory effects intensifying as salt concentration increased. Further analysis revealed seed size shows no correlation with germination capacity and radicle growth rate significantly surpasses that of the coleoptile. Clustering analysis based on dynamic image-derived indices classified the 210 wheat materials into two groups with significantly different salt tolerance. GWAS identified 429 loci associated with salt stress response during germination, including one potential candidate gene, TraesCS7A03G007080, known to play a role in salt tolerance mechanisms. This study provides important genetic materials for the evaluation of salt-tolerant wheat varieties at the germination stage and offers a low-cost, high-throughput, and reliable technical approach for dissecting the genetic basis of salt tolerance during wheat germination.

Keywords:  wheat       germination       salinity stress       high-throughput phenotyping       GWAS  
Online: 05 February 2026  
Fund: 

This research was supported by the projects of the National Key Research and Development Program of China (2024YFD2301305), the Natural Science Foundation of Jiangsu Province, China (BK20241543), the Jiangsu Innovation Support Program for International Science and Technology Cooperation Project, China (BZ2023049), the Key R&D Project of Shandong Province, China (2024TZXD070), the National Natural Science Foundation of China (32502036, 32272213, 32030076, U1803235, 32021004), the National Key Research and Development Program of China (2023YFD2300200), the China Agriculture Research System (CARS-03), the Shandong Province First-class Discipline Construction “811” Project, China, and the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (JCIC-MCP).

About author:  #Correspondence Wenliang Wan, E-mail: Wanwl@shzu.edu.cn; Jiawei Chen, E-mail: chenjiawei@njau.edu.cn; Dong Jiang, E-mail: jiangd@njau.edu.cn # These authors contributed equally to this work.

Cite this article: 

Qing Li, Zhuangzhuang Sun, Xiaofang Li, Zihan Jing, Xiaomiao Tian, Yinchen Zhang, Yingyin Yao, Zhen Zhang, Meng Wang, Xiao Wang, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Wenliang Wan, Jiawei Chen, Dong Jiang. 2026. Combining cost-effective germination imaging and genome-wide association study to unravel genetic variation of temporal salinity responses in wheat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.02.010

Araus J L, Cairns J E. 2014. Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19, 52-61.

Campbell M T, Knecht A C, Berger B, Brien C J, Wang D, Walia H. 2015. Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiology 168, 1476-1489.

Colmer J, O'Neill C M, Wells R, Bostrom A, Reynolds D, Websdale D, Shiralagi G, Lu W, Lou Q, Le Cornu T, Ball J, Renema J, Flores Andaluz G, Benjamins R, Penfield S, Zhou J. 2020. SeedGerm: A cost-effective phenotyping platform for automated seed imaging and machine-learning based phenotypic analysis of crop seed germination. New Phytologist, 228, 778-793.

Dong S S, He W M, Ji J J, Zhang C, Guo Y, Yang T L. 2020. LDBlockShow: A fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Briefings in Bioinformatics, 22, 4.

Duan S, Al-Huqail A A, Alsudays I M, Younas M, Aslam A, Shahzad A N, Qayyum M F, Rizwan M, Alhaj Hamoud Y, Shaghaleh H, Hong Yong J W. 2024. Effects of biochar types on seed germination, growth, chlorophyll contents, grain yield, sodium, and potassium uptake by wheat (Triticum aestivum L.) under salt stress. BMC Plant Biology, 24, 487.

Fernandez R, Crabos A, Maillard M, Nacry P, Pradal C. 2022. High-throughput and automatic structural and developmental root phenotyping on Arabidopsis seedlings. Plant Methods, 18, 127.

Furbank R T, Tester M. 2011. Phenomics-technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16, 635-644.

FAO. 2024. Global status of salt-affected soils - Main report. Rome. https://doi.org/10.4060/cd3044en

Gaggion N, Ariel F, Daric V, Lambert É, Legendre S, Roulé T, Camoirano A, Milone D H, Crespi M, Blein T, Ferrante E. 2021. ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture. Gigascience, 10, 7.

Garma J, Fernandez-Garcia N, Bardisi E, Pallol B, Asensi-Rubio J S, Bru R, Olmos E. 2015. New insights into plant salt acclimation: The roles of vesicle trafficking and reactive oxygen species signalling in mitochondria and the endomembrane system. New Phytologist, 205, 216-239.

Genze N, Bharti R, Grieb M, Schultheiss S J, Grimm D G. 2020. Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods, 16, 157.

Guo P, Chong L, Jiao Z, Xu R, Niu Q, Zhu Y. 2025. Salt stress activates the CDK8-AHL10-SUVH2/9 module to dynamically regulate salt tolerance in Arabidopsis. Nature Communications, 16, 2454.

Guo S, Lv L, Zhao Y, Wang J, Lu X, Zhang M, Wang R, Zhang Y, Guo X. 2023. Using high-throughput phenotyping analysis to decipher the phenotypic components and genetic architecture of maize seedling salt tolerance. Genes, 14, 1771.

Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences of the United States of America, 111, 851.

Hassan M A, Yang M, Fu L, Rasheed A, Zheng B, Xia X, Xiao Y, He Z. 2019. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods, 15, 37.

Hmissi M, Krouma A, García-Sánchez F, Chaieb M. 2024. Potential of seed halopriming in the mitigation of salinity stress during germination and seedling establishment in durum wheat (Triticum durum Desf.). Plants, 13, 66.

Hu Y, Schmidhalter U. 2023. Opportunity and challenges of phenotyping plant salt tolerance. Trends in Plant Science, 28, 552-566.

Li Q, Fan S, Cao J, Sun Z, Zhong C, Min H, Liang S, Wang X, Zhou Q, Cai J, Zhong Y, Huang M, Jiang D. 2025. Mechanisms of the formation of acquired drought tolerance in wheat: Insights from combining high-throughput phenotyping and genome-wide association study. Journal of Experimental Botany, 76, 4154-4170.

Li S, Yu S, Zhang Y, Zhu D, Li F, Chen B, Mei F, Du L, Ding L, Chen L, Song J, Kang Z, Mao H. 2022. Genome-wide association study revealed TaHXK3-2A as a candidate gene controlling stomatal index in wheat seedlings. Plant, Cell & Environment, 45, 2306-2323.

Liu G, Zeng Y, Li B, Wang X, Jiang L, Guo Y. 2025. SOS2 phosphorylates FREE1 to regulate multi-vesicular body trafficking and vacuolar dynamics under salt stress. The Plant Cell, 37, koaf012.

Ma L, Qin D B, Sun L, Zhang K, Yu X, Dang A K, Hou S, Zhao X, Yang Y, Wang Y, Chen Y, Guo Y. 2025. SALT OVERLY SENSITIVE2 and AMMONIUM TRANSPORTER1;1 contribute to plant salt tolerance by maintaining ammonium uptake. The Plant Cell, 37, koaf034.

Ma L, Wang C, Hu Y, Dai W, Liang Z, Zou C, Pan G, Lübberstedt T, Shen Y. 2022. GWAS and transcriptome analysis reveal MADS26 involved in seed germination ability in maize. Theoretical and Applied Genetics, 135, 1717-1730.

Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F. 2021. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 14, 1965-1968.

Masteling R, Voorhoeve L, IJsselmuiden J, Dini-Andreote F, de Boer W, Raaijmakers J M. 2020. DiSCount: Computer vision for automated quantification of Striga seed germination. Plant Methods, 16, 60.

Murphy K M, Ludwig E, Gutierrez J, Gehan M A. 2024. Deep learning in image-based plant phenotyping. Annual Review of Plant Biology, 75, 771-795.

Oyiga B C, Sharma R C, Shen J, Baum M, Ogbonnaya F C, Léon J, Ballvora A. 2016. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. Journal of Agronomy and Crop Science, 202, 472-485.

Quamruzzaman M, Manik S M N, Shabala S, Cao F, Zhou M. 2022. Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. Theoretical and Applied Genetics, 135, 709-721.

Quan X, Liu J, Zhang N, Xie C, Li H, Xia X, He W, Qin Y. 2021. Genome-wide association study uncover the genetic architecture of salt tolerance-related traits in common wheat (Triticum aestivum L.). Frontiers in Genetics, 12, 663941.

Sun D, Robbins K, Morales N, Shu Q, Cen H. 2022. Advances in optical phenotyping of cereal crops. Trends in Plant Science, 27, 191-208.

Sun Z, Song Y, Li Q, Cai J, Wang X, Zhou Q, Huang M, Jiang D. 2021. An integrated method for tacking and monitoring stomata dynamics from microscope videos. Plant Phenomics, 2021, 1-11.

Tao H, Xu S, Tian Y, Li Z, Ge Y, Zhang J, Wang Y, Zhou G, Deng X, Zhang Z, Ding Y, Jiang D, Guo Q, Jin S. 2022. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Communications, 3, 100344.

Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. 2017. Plant phenomics, from sensors to knowledge. Current Biology, 27, R770-R783.

Wang X, Sun J, Yi Z, Dong S. 2025. Effects of seed size on soybean performance: Germination, growth, stress resistance, photosynthesis, and yield. BMC Plant Biology, 25, 219.

Wen Z, Tan R, Zhang S, Collins P J, Yuan J, Du W, Gu C, Ou S, Song Q, An Y Q C, Boyse J F, Chilvers M I, Wang D. 2018. Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnology Journal, 16, 1825-1835.

Xiao Q, Bai X, Zhang C, He Y. 2022. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. Journal of Advanced Research, 35, 215-230.

Xu Y, Bu W, Xu Y, Fei H, Zhu Y, Ahmad I, Nimir N E A, Zhou G, Zhu G. 2024a. Effects of salt stress on physiological and agronomic traits of rice genotypes with contrasting salt tolerance. Plants, 13, 1157.

Xu Y, Weng X, Jiang L, Huang Y, Wu H, Wang K, Li K, Guo X, Zhu G, Zhou G. 2024b. Screening and evaluation of salt-tolerant wheat germplasm based on the main morphological indices at the germination and seedling stages. Plants, 13, 3201.

Yang W, Feng H, Zhang X, Zhang J, Doonan J H, Batchelor W D, Xiong L, Yan J. 2020. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Molecular Plant, 13, 187-214. 

Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L. 2014. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nature Communications, 5, 5087.

Yang Z, Gao S, Xiao F, Li G, Ding Y, Guo Q, Paul M J, Liu Z. 2020. Leaf to panicle ratio (LPR): A new physiological trait indicative of source and sink relation in japonica rice based on deep learning. Plant Methods, 16, 117.

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X. 2021. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics, 19, 619-628.

Yu S, Wu J, Wang M, Shi W, Xia G, Jia J, Kang Z, Han D. 2020. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. The Crop Journal, 8, 1011-1024.

Zhang G, Zhou J, Peng Y, Tan Z, Zhang Y, Zhao H, Liu D, Liu X, Li L, Yu L, Jin C, Fang S, Shi J, Geng Z, Yang S, Chen G, Liu K, Yang Q, Feng H, Guo L, et al. 2023. High-throughput phenotyping-based quantitative trait loci mapping reveals the genetic architecture of the salt stress tolerance of Brassica napus. Plant, Cell & Environment, 46, 549-566.

Zhang H, Zhu J, Gong Z, Zhu J K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23, 104-119.

Zhao C, Zhang H, Song C, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1, 100017.

Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. 2024. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics, 51, 16-34.

[1] Jie Shuai, Qiang Tu, Yicong Zhang, Xiaobo Xia, Yuhua Wang, Shulin Cao, Yifan Dong, Xinli Zhou, Xu Zhang, Zhengguang Zhang, Yi He, Gang Li. Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1051-1063.
[2] Cong Huang, Min Zheng, Yizhong Huang, Liping Cai, Xiaoxiao Zou, Tianxiong Yao, Xinke Xie, Bin Yang, Shijun Xiao, Junwu Ma, Lusheng Huang. Unraveling genetic underpinnings of purine content in pork[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1099-1113.
[3] Jili Xu, Shuo Liu, Zhiyuan Gao, Qingdong Zeng, Xiaowen Zhang, Dejun Han, Hui Tian. Genome-wide association study reveals genomic regions for nitrogen, phosphorus and potassium use efficiency in bread wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 847-863.
[4] Xiukun Li, Jing Hao, Hongtao Deng, Shunli Cui, Li Li, Mingyu Hou, Yingru Liu, Lifeng Liu. Identification of a pleiotropic QTL and development of KASP markers for 100-pod weight, 100-seed weight, and shelling percentage in peanut[J]. >Journal of Integrative Agriculture, 2026, 25(3): 893-902.
[5] Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng. Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 864-878.
[6] Yuhuai Liu, Heng Wang, Li Wang, Jina Ding, Hui Zhai, Qiujin Ma, Can Hu, Tida Ge. Microplastics reduce the wheat (Triticum aestivum L.) net photosynthetic rate through rhizospheric effects[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1263-1275.
[7] Lin Wang, Fei Liu, Yumeng Bian, Mudi Sun, Zhensheng Kang, Jie Zhao. Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 744-755.
[8] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[9] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[10] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[11] Yapeng Zhang, Wentao Cai, Qi Zhang, Qian Li, Yahui Wang, Ruiqi Peng, Haiqi Yin, Xin Hu, Zezhao Wang, Bo Zhu, Xue Gao, Yan Chen, Huijiang Gao, Lingyang Xu, Junya Li, Lupei Zha. Integrated analyses of genomic and transcriptomic data reveal candidate variants associated with carcass traits in Huaxi cattle[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3169-3184.
[12] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[13] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[14] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[15] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
No Suggested Reading articles found!