Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Proactive optimization of drip-applied DPC based on cultivar sensitivity: Increasing machine-harvested cotton yield and reducing DPC residues

Feng Shi1*, Yu Tian1*, Xiaojuan Shi1, Liwen Tian2#, Xianzhe Hao3, Nannan Li1, Hongxia Zhang1, Humei Zhang1, Houxiu Zhao1, Shijie Deng1, Xuan Liu1, Guoxing Ma1, Jing Li1, Jun Wang3, Honghai Luo1#

1 Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group/College of Agriculture, Shihezi University, Shihezi 832003, China

2 Cotton Research Institute of Xinjiang Academy of Agricultural Science, Urumqi 830091, China

3 Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832003, China

 Highlights 

· Drip 1,1-dimethyl piperidinium chloride (DPC) can optimize agronomic traits and canopy structures in cotton, facilitating defoliation and boll opening.

· Drip DPC can increase boll number and boost yield and reduce the levels of DPC residues in cotton plants.

· Coordinating the use of appropriate cultivars and drip DPC doses represents a viable alternative to foliar spraying.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在注重节本增效的现代棉花栽培背景下,滴灌施用缩节胺(1,1-dimethyl piperidinium chlorideDPC)具有潜在优势,例如在干旱棉区能够减少传统DPC叶面喷施化控所需的人工与机械成本。然而,滴施DPC的适宜剂量及其对棉花生长和产量的调控效应,尤其是不同DPC敏感棉花品种的响应规律,目前仍尚不明确。2023年和2024年开展了为期两年的田间试验,旨在评估不同棉花品种及滴施DPC用量对棉花物候、农艺性状、冠层结构、脱叶吐絮、产量和DPC残留量的影响。试验选用惠远720H720DPC敏感型)和新陆早74号(L74DPC钝感型)棉花品种,以不施用DPCD0)和叶面喷施DPCS12023年和2024年剂量分别为330 g ha−1375 g ha−1)为对照,设置滴施DPC处理D1(剂量与S1一致)、D4(剂量为S14倍)和D6(剂量为S16倍)。结果表明,与D0相比,H720种在D4处理和L74D6处理下的全生育期缩短了9天;其中,盛花期至盛铃后期的生育天数缩短6天。株高、果枝始节高和株宽显著降低10.1–19.1%。盛蕾期至吐絮期的冠层开度和冠层中上部透光率分别增加7.9–55.9%和0.4–7.0%。脱叶率和吐絮率增加1.5–3.4%。中部棉铃数增加16.7–36.4%,产量提升4.9–7.6%。与S1相比,H720种在D4处理和L74D6处理下的产量表现相当,但棉株内的DPC残留量显著降低36.3%–71.0%。此外,D6处理土壤中的DPC残留量是极少的。这些结果表明,依据棉花品种特性,采用适宜的滴施DPC剂量,可在优化棉花生长发育的基础上,降低棉株及土壤中的DPC残留量。本研究为滴施DPC调控体系替代叶面喷施、推进棉花轻简化栽培提供了宝贵的实践依据。



Abstract  

Within the context of modern cotton cultivation, which emphasizes cost savings and efficiency improvements, drip application of 1,1-dimethyl piperidinium chloride (DPC) provides potential advantage such as reducing the labour and mechanical costs associated with the chemical regulation of conventional DPC foliar spraying in arid cotton-growing areas. However, the appropriate drip DPC dose and its regulatory effects on cotton growth and yield, and particularly the responses to cultivars with different sensitivities to DPC, remain uncertain. A two-year (2023–2024) field experiment was conducted to evaluate the influences of various cultivars and drip DPC doses on cotton phenology, agronomic traits, canopy development, defoliation, boll opening, yield and residual DPC levels. The cultivars Huiyuan 720 (H720, DPC-sensitive) and Xinluzao 74 (L74, DPC-insensitive) were chosen, the D0 (no DPC) and S1 (DPC foliar spraying at 330 g ha−1 in 2023 and 375 g ha−1 in 2024) treatments were used as controls, and the drip DPC doses were D1 (the same dose as that in S1), D4 (four times the dose in S1) and D6 (six times the dose in S1). The results indicated that compared with those in D0, the growth periods of H720 in D4 and L74 in decreased by 9 days; in particular, the number of growth days from the peak flowering stage to the late peak bolling stage decreased by 6 days. The plant height, the height of the first fruiting branch, and plant width decreased significantly, by 10.1–19.1%. The diffuse non-interceptance and canopy light transmittance in the middle and upper parts from the peak squaring stage to the boll opening stage increased by 7.9–55.9% and 0.4–7.0%, respectively. The defoliation and boll opening rates increased by 1.5–3.4%. The boll numbers in the middle part increased by 16.7–36.4%, and the yield increased by 4.9–7.6%. Compared with those in S1, the yields of H720 in D4 and of L74 in D6 were comparable but the levels of DPC residues in the cotton plants significantly decreased by 36.3–71.0%. Moreover, the levels of DPC residues in D6 were minimal in soil. These results indicated that an appropriate drip DPC dose can optimize cotton growth and development and reduce the levels of DPC residues based on the cultivar characteristics. This study provides valuable practical insights into the potential of a drip DPC regulation system to replace the foliar spraying method and to advance light and simplified cotton cultivation.

Keywords:  DPC drip application       canopy structure       defoliation and boll opening       cotton yield       residual DPC level  
Online: 05 February 2026  
Fund: 

This study was supported by the projects sponsored by the Tianshan Talents Introduction Plan–Autonomous Region Tianshan Talents Leading Talents in Science and Technology Innovation (2022TSYCLJ0061), the Development Fund for Xinjiang Talents XL (XL202405-07), and the Tianshan Talent Science and Technology Innovation Team Program (2024TSYCTD0019).

About author:  Feng Shi, E-mail: shifengxjyl@163.com; Yu Tian, E-mail: rainy.tian@163.com; #Correspondence Liwen Tian, E-mail: 1365400936@qq.com; Honghai Luo, E-mail: luohonghai79@163.com *These authors contributed equally to this study.

Cite this article: 

Feng Shi, Yu Tian, Xiaojuan Shi, Liwen Tian, Xianzhe Hao, Nannan Li, Hongxia Zhang, Humei Zhang, Houxiu Zhao, Shijie Deng, Xuan Liu, Guoxing Ma, Jing Li, Jun Wang, Honghai Luo. 2026. Proactive optimization of drip-applied DPC based on cultivar sensitivity: Increasing machine-harvested cotton yield and reducing DPC residues. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.02.009

Aldakhil A M, Zaheer A, Younas S, Nassani A A, Abro M M Q, Zaman K. 2019. Efficiently managing green information and communication technologies, high-technology exports, and research and development expenditures: A case study. Journal of Cleaner Production, 240, 118164.

Bednarz C W, Bridges D C, Brown S M. 2000. Analysis of cotton yield stability across population densities. Agronomy Journal, 92, 128–135.

Bogiani J C, Rosolem C A. 2009. Sensibilidade de cultivares de algodoeiro ao cloreto de mepiquat. Pesquisa Agropecuária Brasileira, 44, 1246–1253.

Chalise D P, Snider J L, Hand L C, Roberts P, Vellidis G, Ermanis A, Collins G D, Lacerda L N, Cohen Y, Pokhrel A, Parkash V, Lee J M. 2022. Cultivar, irrigation management, and mepiquat chloride strategy: Effects on cotton growth, maturity, yield, and fiber quality. Field Crops Research, 286, 108633.

Cook D R, Kennedy C W. 2000. Early flower bud loss and mepiquat chloride effects on cotton yield distribution. Crop Science, 40, 1678–1684.

Cordeiro C F D S, Santos I F, Mello P R D, Echer F R. 2021. Cotton root growth response to mepiquat chloride application in early reproductive stages are cultivar dependent. Crop Science, 61, 1987–1995.

Dai J L, Kong X Q, Zhang D M, Li W J, Dong H Z. 2017. Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Research, 214, 142–148.

Dong H Z, Mao S C, Zhang W F, Chen D H. 2014. On boll-setting optimization theory for cotton cultivation and its new development. Scientia Agricultura Sinica, 47, 441–451. (in Chinese).

Dong H Z, Zhang Y J, Zhang D M, Dai J L, Zhang W F. 2018. New grouped harvesting-based population structures of cotton. Scientia Agricultura Sinica, 51, 4615–4624. (in Chinese).

Feng G Y, Luo H H, Yao Y D, Yang M S, Du M W, Zhang Y L, Zhang W F. 2012. Spatial distribution of leaf and boll in relation to canopy photosynthesis of super high-yielding cotton in Xinjiang. Scientia Agricultura Sinica, 45, 2607–2617. (in Chinese).

Feng G Y, Luo H H, Zhang Y L, Gou L, Yao Y D, Lin Y Z, Zhang W F. 2016. Relationship between plant canopy characteristics and photosynthetic productivity in diverse cultivars of cotton (Gossypium hirsutum L.). Crop Journal, 4, 499–508.

Feng L, Chi B J, Dong H Z. 2022. Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China. Journal of Integrative Agriculture, 21, 597–609.

Feng L, Dai J L, Tian L W, Zhang H J, Li W J, Dong H Z. 2017. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Field Crops Research, 208, 18–26.

Feng L, Wan S M, Zhang Y L, Dong H Z. 2024. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Research, 312, 109401.

Gao Z, Ma J, Yao Y D, Liu X Y. 2021. A new cotton variety, Huiyuan 720, with early maturity, high yield and fine quality. China Cotton, 48, 36–37. (in Chinese)

Ghidiu G, Kuhar T, Palumbo J, Schuster D. 2012. Drip chemigation of insecticides as a pest management tool in vegetable production. Journal of Integrated Pest Management, 3, 1–5.

Gonias E D, Oosterhuis D M, Bibi A C. 2012. Cotton radiation use efficiency response to plant growth regulators. Journal of Agricultural Science, 150, 595–602.

Guo J H, Li Y G, Zhao H, Yao Y D. 2017. A high yield and machine-harvested cotton variety, Xinluzao 74. China Cotton, 44, 28–29. (in Chinese) 

Gwathmey C O, Clement J D. 2010. Alteration of cotton source–sink relations with plant population density and mepiquat chloride. Field Crops Research, 116, 101–107.

Gwathmey C O, Craig Jr C C. 2003. Managing earliness in cotton with mepiquat-type growth regulators. Crop Management, 2, 1–8.

International Cotton Advisory Committee (ICBC). 2024. Global cotton statistics. [2026-1-27] https://icac.shinyapps.io/ICAC_Open_Data_Dashboaard/#

Jiang H, Tian Y Q, Yan W J, Chen J J, Zhang Z X, Xu H H. 2020. Drip chemigation of flonicamid effectively controls cotton aphid (Aphis gossypii) and is benign to lady beetle (Coccinella septempunctata) and lacewing larva (Chrysoperla sinica). Crop Protection, 129, 105039.

Li M M, Liu X G, Dong F S, Xu J, Zheng Y Q. 2013. Residues and degradations of DA-6 and mepiquat (MQ) in cotton and soil. Environmental Chemistry, 32, 289–294. (in Chinese)

Li N, Lin H X, Wang T X, Li Y, Liu Y, Chen X G, Hu X T. 2020. Impact of climate change on cotton growth and yields in Xinjiang, China. Field Crops Research, 247, 107590.

Li R D, Xu C L, Wu Z S, Xu Y F, Sun S, Song W W, Wu C X. 2025. Optimizing canopy-spacing configuration increases soybean yield under high planting density. Crop Journal, 13, 233–245.

Li W X, Chen M, Chen W T, Qiao C K, Li M H, Han L J. 2012. Determination of mepiquat chloride in cotton crops and soil and its dissipation rates. Ecotoxicology and Environmental Safety, 85, 137–143.

Liao B P, Ren X M, Du M W, Eneji A E, Tian X L, Li Z H. 2021. Multiple applications of mepiquat chloride enhanced development of plant-wide fruits from square initiation to boll opening in cotton. Crop Science, 61, 2733–2744.

Liao J, Zang Y, Luo X W, Zhou Z Y, Zang Y, Wang P, Hewitt A J. 2020. The relations of leaf area index with the spray quality and efficacy of cotton defoliant spraying using unmanned aerial systems (UASs). Computers and Electronics in Agriculture, 169, 105228.

Liu X G, Dong F S, Li S, Zheng Y Q. 2008. Determination of mepiquat chloride residues in cotton and soil by liquid chromatography/mass spectrometry. Journal of AOAC International, 91, 1110–1115.

Lou S W, Tian L W, Luo H H, Du M W, Lin T, Yang T, Zhang P Z. 2023. Analysis on key production techniques of cotton with good quality and high yield in Xinjiang. Scientia Agricultura Sinica, 56, 2673–2685. (in Chinese)

Luo H H, Tang F Y. 2023. Mepiquat chloride application combined with high plant population density promotes carbon remobilization in the roots of upland cotton. Plant Physiology and Biochemistry, 194, 70–84.

Mao L L, Zhang L Z, Evers J B, Van der Werf W, Liu S D, Zhang S P, Wang B M, Li Z H. 2015. Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density. Field Crops Research, 179, 63–71.

Meng L, Yu K K, Wei Z X, Li K X, Dai J L, Li F, Qi H K, Sun L, Zhang L Z, Dong H Z, Lu Z Y, Xu D Y, Zhang M C, Du M W, Tian X L, Li Z H. 2023. High dosage of mepiquat chloride delays defoliation of harvest aids in cotton. Industrial Crops and Products, 202, 116998.

Meng L, Zhang L Z, Qi H K, Du M W, Zuo Y L, Zhang M C, Tian X L, Li Z H. 2021. Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain. Journal of Integrative Agriculture, 20, 2892–2899.

Meng Y H, Song J L, Lan Y B, Mei G Y, Liang Z J, Han Y X. 2019. Harvest aids efficacy applied by unmanned aerial vehicles on cotton crop. Industrial Crops and Products, 140, 111645.

National Bureau of Statistics (NBS). 2024. Bulletin on the National Cotton Output in 2024[2024-12-25]. https://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202412/t20241225_1957879.html

Nie J J, Yuan Y C, Qin D L, Liu Y H, Wang S L, Li J P, Zhang M L, Zhao N, Guo W J, Qi J, Mao L L, Song X L, Sun X Z. 2019. Spatial distribution of bolls affects yield formation in different genotypes of Bt cotton varieties. Journal of Integrative Agriculture, 18, 2492–2504.

Pettigrew W T, Johnson J T. 2005. Effects of different seeding rates and plant growth regulators on early-planted cotton. Journal of Cotton Science, 9, 189–198.

Ren X M, Zhang L Z, Du M W, Evers J B, Van der Werf W, Tian X L, Li Z H. 2013. Managing mepiquat chloride and plant density for optimal yield and quality of cotton. Field Crops Research, 149, 1–10.

Shi F, Tian Y, Shi X J, Hao X Z, Li N N, Li J H, Zhang H X, Chen Y, Liang Q, Han H Y. 2022. Chemical topping with 1,1-dimethylpiperidinium chloride increases lint yield and defoliation of cotton by improving canopy development. Crop and Environment, 1, 251–261.

Siebert J D, Stewart A M. 2006. Influence of plant density on cotton response to mepiquat chloride application. Agronomy Journal, 98, 1634–1639.

Souza-Schlick G D, Soratto R P, Fernandes A M, Martins J D L. 2018. Mepiquat chloride effects on castor growth and yield: Spraying time, rate, and management. Crop Science, 58, 880–891.

Tian X L, Xie X Y, Zhou C J, Yang P Z, Wang B M, Duan L S, Li S L, Yun Y L, He Z P, Li Z H. 2008. Factors affecting the degradation of mepiquat chloride in soil. Journal of Agro-Environment Science, 27, 1726–1731. (in Chinese).

Tung S A, Huang Y, Hafeez A, Ali S, Khan A, Souliyanonh B, Song X H, Liu A D, Yang G Z. 2018. Mepiquat chloride effects on cotton yield and biomass accumulation under late sowing and high density. Field Crops Research, 215, 59–65.

Tung S A, Huang Y, Hafeez A, Ali S, Liu A D, Chattha M S, Ahmad S, Yang G Z. 2020. Morpho-physiological effects and molecular mode of action of mepiquat chloride application in cotton: A review. Journal of Soil Science and Plant Nutrition, 20, 2073–2086.

Wang C, An C C, Li N J, Sun C J, Shen Y, Zhan S S, Li X Y, Wang Y. 2024. Long-lasting growth regulation on cotton using mepiquat chloride adsorbed layered double hydroxide. Advanced Agrochem, 3, 57–63.

Wang F Y, Han H Y, Lin H, Chen B, Kong X H, Ning X Z, Wang X W, Yu Y, Liu J D. 2019. Effects of planting patterns on yield, quality, and defoliation in machine-harvested cotton. Journal of Integrative Agriculture, 18, 2019–2028.

Wang Z, Wang Z, Ma L J, Lv X B, Meng Y L, Zhou Z G. 2021. Straw returning coupled with nitrogen fertilization increases canopy photosynthetic capacity, yield and nitrogen use efficiency in cotton. European Journal of Agronomy, 126, 126267.

Wang Z J, Li Y J, Zhu Q H, Tian L W, Liu F, Zhang X Y, Sun J. 2022. Transcriptome profiling provides new insights into the molecular mechanism underlying the sensitivity of cotton varieties to mepiquat chloride. International Journal of Molecular Sciences, 23, 5043.

Wu L, Li C C, Xu W X, Lou S W, Liu H, Tang J H, Meng L Y, Fang Y F, Sang J M, He H T. 2025. Impact of 1,1-dimethyl piperidinium chloride through drip irrigation on plant architecture characteristics and yield of cotton under the dry-sowing and wet-emergence planting mode. Cotton Science, 37, 106–118. (in Chinese)

Xin F, Zhao J, Zhou Y T, Wang G B, Han X Q, Fu W, Deng J Z, Lan Y B. 2018. Effects of dosage and spraying volume on cotton defoliants efficacy: A case study based on application of unmanned aerial vehicles. Agronomy, 8, 85.

Xu J, Chen L, Sun H, Wusiman N, Sun W N, Li B Q, Gao Y, Kong J, Zhang D W, Zhang X L, Xu H J, Yang X Y. 2019. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. Journal of Experimental Botany, 70, 1525–1538.

Yan W, Du M W, Zhao W C, Li F, Wang X R, Eneji A E, Yang F Q, Huang J, Meng L, Qi H K, Xue G J, Xu D Y, Tian X L, Li Z H. 2019. Relationships between plant architecture traits and cotton yield within the plant height range of 80–120 cm desired for mechanical harvesting in the Yellow River Valley of China. Agronomy, 9, 587.

Yao H S, Zhang Y L, Yi X P, Xue J, Luo Y, Luo H H, Zhang W F. 2015. Study on differences in comparative canopy structure characteristics and photosynthetic carbon assimilation of field-grown pima cotton (Gossypium barbadense) and upland cotton (G. hirsutum). Scientia Agricultura Sinica, 48, 251–261. (in Chinese)

Zhang T, Li G W, Li K X, Li X X, Zhao Q. 2022. Effects of DPC through drip irrigation on growth and yield of cotton. Crops, 4, 124–131. (in Chinese)

Zhang X, Rui Q Z, Li Y, Chen Y, Chen, Y, Zhang X L, Chen D H, Song M Z. 2020. Architecture of stem and branch affects yield formation in short season cotton. Journal of Integrative Agriculture, 19, 680–689.

Zhao D L, Oosterhuis D M. 2000. Pix plus and mepiquat chloride effects on physiology, growth, and yield of field-grown cotton. Journal of Plant Growth Regulation, 19, 415–422.

Zhao W C, Du M W, Xu D Y, Lu H Y, Tian X L, Li Z H. 2017. Interactions of single mepiquat chloride application at different growth stages with climate, cultivar, and plant population for cotton yield. Crop Science, 57, 1713–1724.

[1] JIANG Hui, GAO Ming-wei, CHEN Ying, ZHANG Chao, WANG Jia-bao, CHAI Qi-chao, WANG Yong-cui, ZHENG Jin-xiu, WANG Xiu-li, ZHAO Jun-sheng. Effect of the L-D1 alleles on leaf morphology, canopy structure and photosynthetic productivity in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(1): 108-119.
[2] ZHU Kuan-yu, YAN Jia-qian, SHEN Yong, ZHANG Wei-yang, XU Yun-ji, WANG Zhi-qin, YANG Jian-chang. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study[J]. >Journal of Integrative Agriculture, 2022, 21(4): 947-963.
[3] WEI Cui-lan, CAO Bing-shuai, HUA Shan, LI Bao-guo. Quantitative analysis of the effect of the PAY1 gene on rice canopy structure during different reproductive stages[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3488-3500.
[4] WANG Shi-hong, MAO Li-li, SHI Jia-liang, NIE Jun-jun, SONG Xian-liang, SUN Xue-zhen. Effects of plant density and nitrogen rate on cotton yield and nitrogen use in cotton stubble retaining fields[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2090-2099.
[5] GONG Li-sha, QU Shu-jie, HUANG Guan-min, GUO Yu-ling, ZHANG Ming-cai, LI Zhao-hu, ZHOU Yu-yi, DUAN Liu-sheng. Improving maize grain yield by formulating plant growth regulator strategies in North China[J]. >Journal of Integrative Agriculture, 2021, 20(2): 622-632.
[6] TIAN Bei-jing, ZHU Jin-cheng, LIU Xi-wei, HUANG Shou-bing, WANG Pu.
Interacting leaf dynamics and environment to optimize maize sowing date in North China Plain
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1227-1240.
[7] ZHANG Xiang, RUI Qiu-zhi, LI Yuan, CHEN Yuan, CHEN Yuan, ZHANG Xi-ling, CHEN De-hua, SONG Mei-zhen . Architecture of stem and branch affects yield formation in short season cotton[J]. >Journal of Integrative Agriculture, 2020, 19(3): 680-689.
[8] MIN Wei, GUO Hui-juan, ZHANG Wen, ZHOU Guang-wei, MA Li-juan, YE Jun, HOU Zhen-an. Irrigation water salinity and N fertilization: Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton fild[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1121-1131.
[9] MA Xiao-yan, WU Han-wen, JIANG Wei-li, MA Ya-jie, MA Yan. Goosegrass (Eleusine indica) density effects on cotton (Gossypium hirsutum)[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1778-1785.
[10] Khalid Usman, Niamatullah Khan, Muhammad Umar Khan, Aziz ur Rehman , Said Ghulam. Impact of Tillage and Herbicides on Weed Density, Yield and Quality of Cotton in Wheat Based Cropping System[J]. >Journal of Integrative Agriculture, 2013, 12(9): 1568-1579.
No Suggested Reading articles found!