Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Development of innovative image descriptors for phenotyping peanut pod constriction and discovery of QTLs underlying this trait

Shengzhong Zhang1, Feifei Wang1, Xiaohui Hu1, Huarong Miao1, Jun Hong2, Shihua Shan1, Xiaoyuan Chi1, Jing Chen1#, Xinyou Zhang3#

1 Shandong Academy of Agricultural Sciences, Jinan 250100, China

2 Center for Desert Agriculture, King Abdullah University of Science and Technology, Jeddah 23955, Saudi Arabia

3 Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

 Highlights 

Novel image descriptors, along with an accurate and rapid phenotyping method, were introduced to improve pod constriction evaluation in peanut.

A major consensus QTL region spanning a 728-kb interval was newly identified for pod constriction metrics.

A candidate gene exhibiting a frameshift variation was identified within the consensus region and its diagnostic markers were developed.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

荚果缢缩,是决定花生荚果制品商品价值及产量的关键形态性状。传统表型评价指标(如目测评分或基于果腰长度的衍生指标)存在测量精度不足或适用性有限等问题,尤其对于特殊类型的荚果测量效果不佳,限制了对该性状基因的发掘。为解决这些问题,本研究引入两种新型图像评价指标:正与背缢缩深度指数(Front_DIBack_DI)。这些新型指标能够实现对不同类型荚果缢缩程度的准确、稳健评估。此外,本研究开发了基于深度学习技术的自动测量脚本,以实现上述指标的高效精准提取。本研究同时利用新型指标和传统指标对一个重组自交系群体(鲁花11×06B16)进行表型鉴定,在三种环境中定位到4个与Front_DI相关的QTL4个与Back_DI相关的QTL3个与目测评分相关的QTL以及2个与果腰长度衍生指标相关QTL。在第2染色体上检测到一个主效且不同指标共定位的QTL区域。Meta分析进一步将该区域精细定位至一个728 kb区间。在此区间内,Arahy.X14VTN基因编码区在亲本间存在一个InDel变异,导致移码突变及预测的蛋白质结构改变。针对该候选基因开发了诊断标记,并验证了其对荚果缢缩变异的遗传效应。本研究提出的新型图像评价指标与遗传位点,为阐明花生荚果缢缩性状的遗传调控机制提供了新见解,并为后续该性状的遗传改良提供了可靠工具。



Abstract  

Pod constriction (PC) is a key morphological trait determining both commercial values and yield of in-shell peanuts. Conventional phenotyping metrics (visual scores and pod waist length derived descriptors) suffer from low precision or limited applicability, especially for atypical pod shapes, which have constrained discovery of underlying genes. To address these limitations, this study introduced two novel image descriptors: front and back constriction depth indices (Front_DI and Back_DI). These indices enable accurate and robust evaluation of PC across diverse pod morphologies. Additionally, a Python script employing the deep learning technology was developed to efficiently and precisely extract these metrics. By applying both novel and conventional phenotyping methods to a recombinant inbred line population (Luhua 11×06B16), this study identified four quantitative trait loci (QTLs) for Front_DI, four for Back_DI, three for visual score, and two for a pod waist length-based descriptor across three environments. A major and co-localized QTL region was consistently detected on chromosome 2. Meta-analysis further refined this region to a 728-kb consensus interval. Within this interval, an InDel was identified in the coding region of Arahy.X14VTN between the two parental lines, resulting in a frameshift mutation and a predicted alteration in protein structure. Diagnostic markers were developed for this candidate gene, confirming the genetic effect on PC variation. The novel image descriptors and genetic loci presented here improve our understanding of the genetic basis of PC in peanut and offer practical tools for molecular breeding aimed at trait improvement.

Keywords:  image-based descriptor        peanut        pod constriction        QTL        candidate gene  
Online: 05 February 2026  
Fund: 

This work was supported by the National Key Research and Development Program of China (2023YFD1202800), Natural Science Foundation of Shandong Province, the Agricultural Scientific and the Technological Innovation Project of Shandong Academy of Agricultural Sciences, Breeding Project from Department Science & Technology of Shandong Province, China (2024LZGC031), the Major Scientific and Technological Achievements Cultivation Program of Shandong Academy of Agricultural Sciences, China (CXGC2025E02), and the Taishan Scholars Program, China (tstp20240523).

About author:  #Correspondence Jing Chen, E-mail: mianbaohua2008@126.com; Xinyou Zhang, E-mail: haasz@126.com

Cite this article: 

Shengzhong Zhang, Feifei Wang, Xiaohui Hu, Huarong Miao, Jun Hong, Shihua Shan, Xiaoyuan Chi, Jing Chen, Xinyou Zhang, Shengzhong Zhang, Feifei Wang, Xiaohui Hu, Huarong Miao, Jun Hong, Shihua Shan, Xiaoyuan Chi, Jing Chen, Xinyou Zhang. 2026. Development of innovative image descriptors for phenotyping peanut pod constriction and discovery of QTLs underlying this trait. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.02.004

Ang Y, Li B, Shen J, Li J, Zhao Y, Li T, Sun H, Cheng X, Wu F, Du M, Zhang C, Shi Y, Li M, Liu E. 2025. The GRAIN SIZE 8-GRAIN LENGTH 10 module controls the grain size in rice by regulating the expression of GA- and CTK-related genes. Plant Journal, 122, e70247.

Ballén-Taborda C, Maharjan N, Hopkins M, Guimarães L A, Lindsey D, Bertioli D J, Leal-Bertioli S C. 2024. A study of pod constriction in a peanut population with mixed wild and cultivated genetics. Crop Science, 64, 586–602.

Bera S K, Das P K. 1998. Inheritance of pod beak and pod constriction in groundnut. Current Agriculture Research, 11, 1–3.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics51, 877–884.

Chang F, Lv W, Lv P, Xiao Y, Yan W, Chen S, Zheng L, Xie P, Wang L, Karikari B, Abou-Elwafa S F, Jiang H, Zhao T. 2021. Exploring genetic architecture for pod-related traits in soybean using image-based phenotyping. Molecular Breeding, 41, 28.

Chen H, Xiong F, Xu R, Chen X, Zhong H, Zhang Y, Lan X, Zhang H, Chen Y, Hu R, Lin G, Tang Z. 2023. Construction of EMS-induced peanut mutant libraries and identification of pod-related traits mutant lines. Phyton-International Journal of Experimental Botany, 92, 537–557.

Cingolani P, Platts A, Wangle L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6, 80–92.

Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. 2016. A developmental transcriptome map for allotetraploid Arachis hypogaea. Frontiers in Plant Science7, 1446.

Coffelt T A, Hammons R O. 1974. Inheritance of pod constriction in peanuts. Journal of Heredity65, 94–96.

Cotella N G, Gallo D D, Sapag K, Barbero C A, Acevedo D F, Bruno M M. 2025. Peanut shell biochar as a conductive additive for cement composites. Waste and Biomass Valorization16, 2115–2124.

Crowell S, Korniliev P, Falcão A, Ismail A, Gregorio G, Mezey J, McCouch S. 2016. Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nature Communications, 7, 10527.

Deng L, Han Z. 2019. Image features and DUS testing traits for peanut pod variety identification and pedigree analysis. Journal of the Science of Food and Agriculture, 99, 2572–2578.

Desmae H, Janila P, Okori P, Pandey M K, Motagi B N, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, Oteng-Frimpong R, Miningou A, Ojiewo C, Varshney R K. 2019. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breeding, 138, 425–444.

Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y. 2017. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant, 10, 685–694.

Elliott K, Berry J C, Kim H, Bart R S. 2022. A comparison of ImageJ and machine learning based image analysis methods to measure cassava bacterial blight disease severity. Plant Methods, 18, 86.

Feng C, Chen B, Hofer J, Shi Y, Jiang M, Song B, Cheng H, Lu L, Wang L, Howard A, Bendahmane A, Fouchal A, Moreau C, Sawada C, LeSignor C, Zhang C, Vikeli E, Tsanakas G, Zhao H, Cheema J, et al. 2025. Genomic and genetic insights into Mendel’s pea genes. Nature, 642, 980–989.

Gao J, Hu X, Gao C, Chen G, Feng H, Jia Z, Zhao P, Yu H, Li H, Geng Z, Fu J, Zhang J, Cheng Y, Yang B, Pang Z, Xiang D, Jia J, Su H, Mao H, Lan C, et al. 2023. Deciphering genetic basis of developmental and agronomic traits by integrating high-throughput optical phenotyping and genome-wide association studies in wheat. Plant Biotechnology Journal, 21, 1966–1977.

Geng T, Yu H, Yuan X, Ma R, Li P. 2024. Research on segmentation method of maize seedling plant instances based on UAV multispectral remote sensing images. Plants, 13, 1842.

Gudi S, Saini D K, Singh G, Halladakeri P, Kumar P, Shamshad M, Sharma A. 2022. Unraveling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci. Planta, 255, 1–19.

Guo D D. 2022. Genome-wide association analysis of the traits related to pod drop and pod size in peanut. MSc thesis, Huazhong Agricultural University, China. (in Chinese)

Häberle J, Holzapfel J, Schweizer G, Hartl L. 2009. A major QTL for resistance against Fusarium head blight in European winter wheat. Theoretical and Applied Genetics, 119, 325–332.

Hake A A, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak S N, Lingaraju S, Patil P V, Nadaf H L, Gowda M V C, Bhat R S. 2017. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS ONE, 12, e0186113.

Hameed K, Chai D, Rassau A. 2021. Score-based mask edge improvement of MaskRCNN for segmentation of fruit and vegetables. Expert Systems with Applications, 190, 116205.

Ji J, Han Z, Zhao K, Li Q, Du S. 2024. Detection of the farmland plow areas using RGB-D images with an improved YOLOv5 model. International Journal of Agricultural and Biological Engineering, 17, 156–165.

Jiang S, Ao J, Yang H, Xie F, Liu Z, Yang S, Wei Y, Deng X. 2024. Fine-grained recognition of bitter gourd maturity based on Improved YOLOv5-seg model. Scientific Reports, 14, 10856.

Lee Y K, Kim G T, Kim I J, Park J, Kwak S S, Giltsu G, Chung W I. 2006. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development, 133, 4305–4314.

Letunic I, Khedkar S, Bork P. 2021. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Research, 49, D458–D460.

Li S, Yan Z, Guo Y, Su X, Cao Y, Jiang B, Yang F, Zhang Z, Xin D, Chen Q, Zhu R. 2022. SPM-IS: An auto-algorithm to acquire a mature soybean phenotype based on instance segmentation. Crop Journal, 10, 1412–1423.

Li X, Zhao X, Sun S, Tao K, Niu Y. 2025. Meta-QTL analysis and genes responsible for plant and ear height in maize (Zea mays L.). Plants, 14, 1943.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.

Lu A, Ma L, Cui H, Liu J, Ma Q. 2023. Instance segmentation of lotus pods and stalks in unstructured planting environment based on improved YOLOv5. Agriculture, 13, 1568.

Luo H, Ren X, Li Z, Xu Z, Li X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Liao B, Pandey M K, Varshney R K, Guo B, Jiang X, Liu F, Jiang H. 2017. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 18, 58.

Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li H, Zhang Q. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 107, 19579–19584.

Mathieu L, Reder M, Siah A, Ducasse A, Langlands-Perry C, Marcel T C, Morel J B, Saintenac C, Ballini E. 2024. SeptoSympto: A precise image analysis of Septoria tritici blotch disease symptoms using deep learning methods on scanned images. Plant Methods, 20, 18.

McKenna A, Hanna H, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.

Mondal S, Badigannavar A M. 2019. Identification of major consensus QTLs for seed size and minor QTLs for pod traits in cultivated groundnut (Arachis hypogaea L.). 3 Biotech, 9, 347.

Patel J A, Patel S A, Chaudhary D N. 1997. Inheritance of pod beak and pod constriction in groundnut. Indian Journal of Genetics and Plant Breeding, 57, 229–232.

Patil A S, Popvsky S, Levy Y, Chu Y, Clevenger J, Ozias-Atkins P, Hovav R. 2018. Genetic insight and mapping of the pod constriction trait in Virginia-type peanut. BMC Genetics, 19, 93.

Quraishi U M, Pont C, Ain Q U, Flores R, Burlot L, Alaux M, Salse J. 2017. Combined genomic and genetic data integration of major agronomic traits in bread wheat (Triticum aestivum L.). Frontiers in Plant Science, 8,1843.

Ren D, Cui Y, Hu H, Xu Q, Rao Y, Yu X, Zhang Y, Wang Y, Peng Y, Zeng D, Hu J, Zhang G, Gao Z, Zhu L, Chen G, Shen L, Zhang Q, Guo L, Qian Q. 2019. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant Journal, 100, 813–824.

Saini D K, Srivastava P, Pal N, Gupta P K. 2022. Meta-QTLs, ortho meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics135, 1049–1081.

Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, et al. 2012. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology, 12, 80.

Sosnowski O, Charcosset A, Joets J. 2012. BioMercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics28, 2082–2083.

de Summa S, Malerba G, Pinto R, Mori A, Mijatovic V, Tommasi S. 2017. GATK hard filtering: Tunable parameters to improve variant calling for next generation sequencing targeted gene panel data. BMC Bioinformatics, 18, 119.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.

Wang F, Miao H, Zhang S, Hu X, Li C, Chu Y, Chen C, Zhong W, Zhang T, Wang H, Xu L, Yang W, Chen J. 2024. Identification of a major QTL underlying sugar content in peanut kernels based on the RIL mapping population. Frontiers in Plant Science, 15, 1423586.

Wang J, Chen H, Li Y, Shi D, Wang W, Yan C, Yuan M, Sun Q, Chen J, Mou Y, Qu C, Shan S. 2024. Identification of quantitative trait nucleotides and development of diagnostic markers for nine fatty acids in the peanut. Plants, 13, 16.

Wang S, Basten C J, Zeng Z B. 2012. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA. [access date]. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

Xu C Y, Bai S H, Hao Y, Rachaputi R C N, Xu Z, Wallace H M. 2015. Peanut shell biochar improves soil properties and peanut kernel quality on a red Ferrosol. Journal of Soils and Sediments 15, 2220–2231 .

Xu X, Su X, Zhou L, Yu H, Zhang J. 2024. Instance segmentation of Lentinus edodes images based on YOLOv5seg-BotNet. Agronomy, 14, 1808.

Yu S L. 2008. Chinese Peanut Varieties and Their Pedigrees. Shanghai Scientific and Technical Publishers, Shanghai. pp. 34–35. (in Chinese)

Zhang S, Hu X, Wang F, Chu Y, Yang W, Xu S, Wang S, Wu L, Yu H, Miao H, Fu C, Chen J. 2023. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.). Journal of Integrative Agriculture, 22, 2323–2334.

Zhang X, Chen L, Sun Y, Si T, Zhang X, Wang Y, Zou X, Wang M. 2019. The research on pod traits and shell strength of peanut varieties with different fruit drop characteristics. Journal of Peanut Science, 48, 60-64. (in Chinese) 

[1] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[2] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[3] Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2911-2922.
[4] Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 3966-3982.
[5] Lihua Liu, Pingping Qu, Yue Zhou, Hongbo Li, Yangna Liu, Mingming Zhang, Liping Zhang, Changping Zhao, Shengquan Zhang, Binshuang Pang. Consensus linkage map construction and QTL mapping for eight yield-related traits in wheat using BAAFS 90K SNP array[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3641-3656.
[6] Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du. Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3250-3263.
[7] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

[8] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
[9] ZHANG Hua, WU Hai-yan, TIAN Rui, KONG You-bin, CHU Jia-hao, XING Xin-zhu, DU Hui, JIN Yuan, LI Xi-huan, ZHANG Cai-ying. Genome-wide association and linkage mapping strategies reveal genetic loci and candidate genes of phosphorus utilization in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2521-2537.
[10] JIA Jia, WANG Huan, CAI Zhan-dong, WEI Ru-qian, HUANG Jing-hua, XIA Qiu-ju, XIAO Xiao-hui, MA Qi-bin, NIAN Hai, CHENG Yan-bo. Identification and validation of stable and novel quantitative trait loci for pod shattering in soybean [Glycine max (L.) Merr.][J]. >Journal of Integrative Agriculture, 2022, 21(11): 3169-3184.
[11] ZHANG Zhe, CHEN Zi-tao, DIAO Shu-qi, YE Shao-pan, WANG Jia-ying, GAO Ning, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi. Identifying the complex genetic architecture of growth and fatness traits in a Duroc pig population[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1607-1614.
[12] DING Xiao-yu, XU Jin-song, HUANG He, QIAO Xing, SHEN Ming-zhen, CHENG Yong, ZHANG Xue-kun. Unraveling waterlogging tolerance-related traits with QTL analysis in reciprocal intervarietal introgression lines using genotyping by sequencing in rapeseed (Brassica napus L.)[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1974-1983.
[13] XU Zhong, SUN Hao, ZHANG Zhe, Zhao Qing-bo, Babatunde Shittu Olasege, Li Qiu-meng, Yue Yang, Ma Pei-pei, Zhang Xiang-zhe, Wang Qi-shan, Pan Yu-chun .
Genome-wide detection of selective signatures in a Jinhua pig population
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1314-1322.
[14] NAN Jiu-hong, YIN Li-lin, TANG Zhen-shuang, CHEN Jian-hai, ZHANG Jie, WANG Hai-yan, DU Xiao-yong, LIU Xiang-dong . Genetic parameter estimation and genome-wide association study (GWAS) of red blood cell count at three stages in a Duroc×Erhualian pig population[J]. >Journal of Integrative Agriculture, 2020, 19(3): 793-799.
[15] DU Zhi-xuan, HAO Hui-ying, HE Jin-peng, WANG Jian-ping, HUANG Zhou, XU Jie, FU Hai-hui, FU Jun-ru, HE Hao-hua. GraS is critical for chloroplast development and affects yield in rice [J]. >Journal of Integrative Agriculture, 2020, 19(11): 2603-2615.
No Suggested Reading articles found!