|
Allu A R, Mesapam S. 2025. Impact of remote sensing data fusion on agriculture applications: A review. European Journal of Agronomy, 164, 127478.
Anonymous. 2021. Pathogens, precipitation and produce prices. Nature Climate Change, 11, 635.
Barreñada L, Dhiman P, Timmerman D, Boulesteix A L, Van Calster B. 2024. Understanding overfitting in random forest for probability estimation: A visualization and simulation study. Diagnostic and Prognostic Research, 8, 14.
Baste S, Klotz D, Acuña Espinoza E, Bardossy A, Loritz R. 2025. Unveiling the limits of deep learning models in hydrological extrapolation tasks. Hydrology and Earth System Sciences, 29, 5871-5891.
Cao M, Bai S, Tang P, Xu H, Wang Y, Zhou G. 2025. Estimation of the pre-winter population of Chilo suppressalis in rice field based on unmanned aerial vehicle multi-spectral remote sensing. Jiangsu Journal of Agricultural Sciences, 41, 305–312. (in Chinese)
Caubel J, Launay M, Ripoche D, Gouache D, Buis S, Huard F, Huber L, Brun F, Bancal M O. 2017. Climate change effects on leaf rust of wheat: Implementing a coupled crop-disease model in a French regional application. European Journal of Agronomy, 90, 53–66.
Chacón-Maldonado A M, Asencio-Cortés G, Troncoso A. 2025. A multimodal hybrid deep learning approach for pest forecasting using time series and satellite images. Information Fusion, 124, 103350.
Chen C J, Li Y S, Tai C Y, Chen Y C, Huang Y M. 2022. Pest incidence forecasting based on Internet of Things and long short-term memory network. Applied Soft Computing, 124, 108895.
Chen H, Lu Y, Xu J, Wang Q. 2020. Occurrence and damage of striped rice stem borers in different cultivation systems in Linhai. Journal of Zhejiang Agricultural Sciences, 61, 1384–1386. (in Chinese)
Chen P, Xiao Q, Zhang J, Xie C, Wang B. 2020. Occurrence prediction of cotton pests and diseases by bidirectional long short-term memory networks with climate and atmosphere circulation. Computers and Electronics in Agriculture, 176, 105612.
Dai C, Zhong Y, Yu J, Cheng Y, Hou M. 2023. Behavioral and physiological adaptation to soil moisture in the overwintering larvae of the rice stem borer in the subtropics. Agriculture, 13, 2177.
Ding L, Lin P, Pan W. 2019. Changes in occurrence of Chilo suppressalis under different meteorological conditions and analysis. Modernizing Agriculture, 8, 54–56. (in Chinese)
Domingues T, Brandão T, Ferreira J C. 2022. Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey. Agriculture, 12, 1350.
Durai S K S, Shamili M D. 2022. Smart farming using machine learning and deep learning techniques. Decision Analytics Journal, 3, 100041.
FAO (Food and Agriculture Organization of the United Nations). 2025. World food situation. [2025-11-13]. https://www.fao.org/worldfoodsituation/csdb/en
Gao Y, Chen X, Chen Z, Bao Y, Yang R, Liu T, Zhai B. 2008. Dynamic analysis on the migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) by Doppler Insect Monitoring Radar and numerical simulation. Acta Ecologica Sinica, 28, 5238–5247. (in Chinese)
Gao Y, Li D, Li D, Xu P, Mao K, Zhang Y, Qin X, Tang T, Wan H, Li J, Guo M, He S. 2020. Efficacy of an adhesive nanopesticide on insect pests of rice in field trials. Journal of Asia-Pacific Entomology, 23, 1222–1227.
Gao Y, Yin F, Hong C, Chen X, Deng H, Liu Y, Li Z, Yao Q. 2025. Intelligent field monitoring system for cruciferous vegetable pests using yellow sticky board images and an improved Cascade R-CNN. Journal of Integrative Agriculture, 24, 220-234.
Ge W, Qiao S, Liu C, Guo F, Wang S, Sun H, Liu Y, Yang F, Wu S, Gao C. 2025. Baseline establishment, susceptibility monitoring and risk assessment of cyproflanilide, a novel meta-diamide insecticide, against Chilo suppressalis (Lepidoptera: Crambidae) in China. Journal of Integrative Agriculture, 24, 4342-4354.
Gitelson A A, Kaufman Y J, Merzlyak M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.
Gitelson A A, Viña A, Arkebauer T J, Rundquist D C, Keydan G, Leavitt B. 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30, 1–4.
Gu Q, Tian J, Li X, Jiang S. 2022. A novel random forest integrated model for imbalanced data classification problem. Knowledge-Based Systems, 250, 109050.
Gülmez B. 2024. Advancements in rice disease detection through convolutional neural networks: A comprehensive review. Heliyon, 10, e33328.
He Y, Wang G, Ren Y, Gao S, Chu D, McKirdy S J. 2024. Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions. Journal of Integrative Agriculture, 23, 3576-3591.
Huang M, Ge X, Shi H, Tong Y, Shi J. 2019. Prediction of current and future potential distributions of the eucalyptus pest Leptocybe invasa (Hymenoptera: Eulophidae) in China using the CLIMEX model. Pest Management Science, 75, 2958–2968.
Huang W, Zhang J, Huang L, Dong Y, Zhao J, Lin Y, Liu L M A, Ruan C, Huiqin M A, Chao R. 2025. Progress of vegetation pest and disease monitoring and forecasting. National Remote Sensing Bulletin, 29, 2065–2082.
Huang X, Jiang T, Wu Z, Zhang W, Xiao H. 2020. Overwintering parasitism is positively associated with population density in diapausing larvae of Chilo suppressalis. Journal of Integrative Agriculture, 19, 785-792.
Huete A R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.
Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.
Ibrahim E A, Salifu D, Mwalili S, Dubois T, Collins R, Tonnang H E Z. 2022. An expert system for insect pest population dynamics prediction. Computers and Electronics in Agriculture, 198, 107124.
Ishiguro S, Li Y, Nakano K, Tsumuki H, Goto M. 2007. Seasonal changes in glycerol content and cold hardiness in two ecotypes of the rice stem borer, Chilo suppressalis, exposed to the environment in the Shonai district, Japan. Journal of Insect Physiology, 53, 392–397.
Jiang X, Zhen J, Miao J, Zhao D, Wang J, Jia S. 2021. Assessing mangrove leaf traits under different pest and disease severity with hyperspectral imaging spectroscopy. Ecological Indicators, 129, 107901.
Jordan C F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50, 663–666.
Li S, Dong P, Zhang H, Xu X, Shi L, Sun T, Qiao H, Yue J, Guo W. 2025. Integrating ecological niche and epidemiological models to predict wheat fusarium head blight using remote sensing and meteorological data. Computers and Electronics in Agriculture, 234, 110255.
Liu J, Bian Y, Zhang Y, Meng Z, Huang C, Zeng J. 2025. Analysis of occurrence trends and causes of major crop diseases and pests in China in 2025. China Plant Protection, 45, 26–29, 44. (in Chinese)
Liu S, Ye F. 2011. Migration patterns of Scirpophaga incertulas and Chilo suppressalis in rice and their application in forecasting. Inner Mongolia Agricultural Science and Technology, 3, 68. (in Chinese)
Lu M X, Cao S S, Liu Z X, Wang X, Du Y Z. 2014. Heat tolerance of developmental and seasonal stages of Chilo suppressalis. Entomologia Experimentalis et Applicata, 152, 91–99.
Lu Y, Wang G, Zhong L, Zhang F, Bai Q, Zheng X, Lu Z. 2017. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China. Crop Protection, 100, 196–202.
Ma C, Liang Y, Lyu X. 2019. Weather analysis to predict rice pest using neural network and DS evidential theory. In: 2019 International Conference on Cyber-enabled Distributed Computing and Knowledge Discovery (CyberC). Institute of Electrical and Electronics Engineers, Guilin, China. pp. 277–283.
Majidi-Shilsar F, Tabatabaei S A, Jalaeian M, Fahrapour-Haghani A, Ebadi A, Khoshkdaman M. 2023. Use of sex pheromone in population control and damage reduction of striped rice stem borer Chilo suppressalis in paddy fields. Applied Entomology and Phytopathology, 91, 61–71.
Makori D M, Abdel-Rahman E M, Odindi J, Mutanga O, Landmann T, Tonnang H E Z. 2024. Multi-pronged abundance prediction of bee pests’ spatial proliferation in Kenya. International Journal of Applied Earth Observation and Geoinformation, 128, 103738.
Mao C, Zhu X, Wang P, Sun Y, Huang R, Zhao M, Hull J J, Lin Y, Zhou F, Chen H, Ma W. 2022. Transgenic double-stranded RNA rice, a potential strategy for controlling striped stem borer (Chilo suppressalis). Pest Management Science, 78, 785–792.
McFeeters S K. 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425–1432.
Merzlyak M N, Gitelson A A, Chivkunova O B, Rakitin V Y. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106, 135–141.
Miao J, Guo P, Li H, Wei C, Liu Q, Gong Z, Duan Y, Li T, Jiang Y, Feng H, Wu Y. 2021. Low barometric pressure enhances tethered-flight performance and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Journal of Economic Entomology, 114, 620–626.
Milli M. 2025. Designing a residual-enhanced hybrid Prophet–LSTM framework for urban air pollution forecasting in Beijing. Scientific Reports, 15, 43646.
Mo W, Li Q, Lu Z, Ullah F, Guo J, Xu H, Lu Y. 2025. Dynamic monitoring of Chilo suppressalis resistance to insecticides and the potential influencing factors. Plants, 14, 724.
Mukherjee R, Ghosh A, Chakraborty C, De J N, Mishra D P. 2025. Rice leaf disease identification and classification using machine learning techniques: A comprehensive review. Engineering Applications of Artificial Intelligence, 139, 109639.
Neta A, Levi Y, Morin E, Morin S. 2023. Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts. Ecological Modelling, 480, 110326.
Pan W, Feng Y, Qi Z, Wang Z. 2025. Research on the evolutionary pattern of the population size of Chilo suppressalis in the coastal rice area of Zhejiang. Acta Agriculturae Shanghai, 41, 77–82. (in Chinese)
Penuelas J, Baret F, Filella I. 1995. Semi-empirical indices to assess carotenoids/chlorophyll alpha ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230
Poggi S, Le Cointe R, Riou J B, Larroudé P, Thibord J B, Plantegenest M. 2018. Relative influence of climate and agroenvironmental factors on wireworm damage risk in maize crops. Journal of Pest Science, 91, 585–599.
Rhodes M W, Bennie J J, Spalding A, Ffrench-Constant R H, Maclean I M D. 2022. Recent advances in the remote sensing of insects. Biological Reviewsy, 97, 343–360.
Rikimaru A, Roy P S, Miyatake S. 2002. Tropical forest cover density mapping. Tropical Ecology, 43, 39-47.
Roujean J L, Breon F M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375–384.
Rouse J W, Haas R H, Schell J A, Deering D W. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In: Proceedings of the Third NASA Earth Resources Technology Satellites Symposium. National Aeronautics and Space Administration,Washington, DC, USA. p. 307.
Ruan C, Dong Y, Huang W, Huang L, Ye H, Ma H, Guo A, Sun R. 2022. Integrating remote sensing and meteorological data to predict wheat stripe rust. Remote Sensing, 14, 1221.
Shamakhi L, Zibaee A, Karimi-Malati A, Hoda H. 2018. A laboratory study on the modeling of temperature-dependent development and antioxidant system of Chilo suppressalis (Lepidoptera: Crambidae). Journal of Insect Science Online, 18, 35.
Shen J, Xiao S, Zheng W, Chai W, Yao H. 2025. Effect of sex-pheromone-trap intelligent monitoring on Chilo suppressalis. China Rice, 31, 89–93. (in Chinese)
Skawsang S, Nagai M, Tripathi N K, Soni P. 2019. Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of Thailand. Applied Sciences, 9, 4846.
Sriwanna K. 2022. Weather-based rice blast disease forecasting. Computers and Electronics in Agriculture, 193, 106685.
Subedi B, Poudel A, Aryal S. 2023. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agricultural and Food Research, 14, 100733.
Sudha Rani D, Venkatesh M N, Naga Satya Sri C H, Anand Kumar K. 2018. Remote sensing as pest forecasting model in agriculture. International Journal of Current Microbiology and Applied Sciences, 7, 2680–2689.
Tan S, Liang Y, Zheng R, Yuan H, Zhang Z, Long C. 2021. Dynamic prediction of Chilo suppressalis occurrence in rice based on deep learning. Processes, 9, 2166.
Uusitalo R, Siljander M, Culverwell C L, Mutai N C, Forbes K M, Vapalahti O, Pellikka P K E, 2019. Predictive mapping of mosquito distribution based on environmental and anthropogenic factors in Taita Hills, Kenya. International Journal of Applied Earth Observation and Geoinformation, 76, 84–92.
Wang L, Ma H, Li J, Gao Y, Fan L, Yang Z, Yang Y, Wang C. 2022. An automated extraction of small- and middle-sized rice fields under complex terrain based on SAR time series: A case study of Chongqing. Computers and Electronics in Agriculture, 200, 107232.
Wang L, Wang T, Ma H, Lu P, Sun W, Fan L, Wang H, Wu Y, Wang Y. 2024. Time-series SAR monitoring of rice in multiple cropping modes combining statistical and phenological characteristics. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–11.
Waters E K, Chen C C M, Rahimi Azghadi M. 2025. Sugarcane health monitoring with satellite spectroscopy and machine learning: A review. Computers and Electronics in Agriculture, 229, 109686.
Wu Q, Hu G, Tuan H A, Chen X, Lu M, Zhai B, Chapman J W. 2019. Migration patterns and winter population dynamics of rice planthoppers in Indo-China: New perspectives from field surveys and atmospheric trajectories. Agricultural and Forest Meteorology, 265, 99–109.
Wu T, Hao S, Kang L. 2021. Effects of soil temperature and moisture on the development and survival of grasshopper eggs in Inner Mongolian grasslands. Frontiers in Ecology and Evolution, 9, 727911.
Xian X, Zhao H, Guo J, Zhang G, Liu H, Liu W, Wan F. 2023. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change. Journal of Integrative Agriculture, 22, 244-2455.
Ye Z, Liu Y, Ye F, Li H, Luo J, Guo J, Feng Z, Hong C, Li L, Liu S, Yang B, Liu W,Yao Q. 2025. Automatic diagnosis of agromyzid leafminer damage levels using leaf images captured by AR glasses. Journal of Integrative Agriculture, 24, 1-13.
Zhai J, Zhao L, Gao D, Xie S, Xu Liao, Wu J. 2024. Preliminary study on control of Chilo suppressalis by nanopesticides. China Rice, 30, 95–97, 101. (in Chinese)
Zhou J, Tu L, Chen H, Jiang T, Lin J. 2022. Deep learning-based rice paddy extraction by fusing spatial and temporal remote sensing information. Geospatial Information, 20, 39–44. (in Chinese)
|