Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Phased dynamic analysis and prediction of rice Chilo suppressalis integrating remote sensing physiological indices and environmental factors

Yuchen Wu1, Lihua Wang1, 2#, Yanxiao Bao1, Weiwei Sun1, 2, Zhiyuan Yao3, Gang Yang1, 2, Yumiao Wang1, 2

1 School of Geography and Remote sensing, Ningbo University, Ningbo 315211, China

2 Ningbo Key Laboratory of Remote Sensing and Ecological Security of Coastal Zone, Zhejiang-Germany Joint Laboratory on Remote Sensing of Coastal EcosystemNingbo University, Ningbo 315211, China

3 Institute of One Health Science, School of Civil & Environmental Engineering and Geography Science, State Key laboratory for Quality and Safety of Agro-proucts Ningbo University. Ningbo 315211, China

 Highlights 

l Introduced LOESS smoothing and first-derivative analysis to identify the key developmental stages of Chilo suppressalis.

l Determined the screening scheme for sensitivity parameters specific to each pest development stage.

l Constructed a stage-specific daily dynamic prediction framework to achieve spatiotemporally explicit extrapolation of C. suppressalis population dynamics at the regional scale.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

二化螟(Chilo suppressalisC. suppressalis)是水稻主产区的重要害虫之一,对水稻产量和品质构成严重威胁。现有虫害预测研究普遍忽视二化螟种群动态阶段性异质特征,且未能充分考虑气象、土壤与水稻生理信息之间的协同作用,难以准确刻画害虫种群数量的全动态变化过程。针对上述问题,本文明确提出了三项方法学创新:(1)引入基于LOESS平滑曲线拟合与斜率变化分析的方法,客观地将二化螟种群动态划分为基数建立期、种群扩张期和暴发高峰期三个阶段;(2)融合性诱监测数据、遥感反演的水稻生理指数以及 ERA5 再分析气象与土壤变量,构建分阶段虫害预测模型;(3)在分阶段框架基础上,设计了针对不同发生阶段的敏感参数筛选方案,并基于随机森林算法构建逐日动态预测模型,综合考虑气象、土壤与作物生理因子。研究结果表明,所提出的分阶段预测模型具有优异的预测性能。在暴发高峰期,三个实验田的决定系数(R²)均超过0.9,平均绝对误差(MAE)低于23.16,均方根误差(RMSE)小于32.86;其中,九龙试验田在各阶段的预测 R²均高于0.89。与长短期记忆网络(LSTM)和Prophet模型相比,随机森林模型表现出更高的稳定性与泛化能力,其测试集 R²均稳定在0.69以上,凸显了其在二化螟分阶段种群动态预测中的稳健性与可靠性。综上所述,本研究为提升虫害综合预测能力及支持精准防控决策提供了具有重要实践价值的技术路径。



Abstract  

Chilo suppressalis is a major pest in rice-producing regions, posing serious threats to rice yield and quality. Existing pest prediction research generally ignore the stage-specific heterogeneity in population dynamics and neglect the synergistic effects among meteorological, soil, and rice physiological information. This makes it challenging to accurately characterize the complete dynamic changes in pest populations. In this study, we explicitly highlight three methodological innovations: (1) the use of a LOESS-based curve fitting and slope-change detection framework to objectively partition C. suppressalis population dynamics into three stages—population establishment, expansion, and outbreak; and (2) the integration of multi-source data, including trap monitoring, rice physiological indices derived from remote sensing, and ERA5 meteorological and soil variables, to construct stage-specific prediction models.; and (3) building upon this stage-based framework, we designed a targeted sensitivity-parameter screening scheme and developed daily dynamic prediction models using the Random Forest (RF) algorithm, which incorporate meteorological, soil, and crop physiological indicators. The results demonstrate that the proposed stage-specific prediction model achieves excellent performance. During the outbreak stage, the R2 for all three experimental fields exceeds 0.9, with MAE below 23.16 and RMSE under 32.86. In the Jiulong field, stage-specific predictions show R2 values above 0.89. Compared with Long Short Term Memory (LSTM) and Prophet models, RF exhibits superior stability and generalization, with test set  consistently above 0.69, highlighting its robustness and reliability for stage-specific prediction of C. suppressalis population dynamics. These findings highlight the practical value of our approach for enhancing comprehensive pest forecasting and supporting targeted pest management.

Keywords:  rice       Chilo suppressalis              spatiotemporal prediction       random forest       stage-specific response  
Online: 29 January 2026  
Fund: 

This work was supported by the Ningbo University High-Level Scientific Research Project Cultivation, China (GJPY2025018), the Key Technology Breakthrough Plan of Ningbo Science and Technology Innovation 2035, China (2024Z262), the Yongjiang Talent Introduction Programme, China (2021 A-136-G), and the Zhejiang Province “Pioneering Soldier” and “Leading Goose” R&D Project, China (2023C01027). 

About author:  Yuchen Wu, E-mail:2014856003@qq.com; # Corresponding author, E-mail: wanglihua1@nbu.edu.cn

Cite this article: 

Yuchen Wu, Lihua Wang, Yanxiao Bao, Weiwei Sun, Zhiyuan Yao, Gang Yang, Yumiao Wang. 2026. Phased dynamic analysis and prediction of rice Chilo suppressalis integrating remote sensing physiological indices and environmental factors. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.043

Allu A R, Mesapam S. 2025. Impact of remote sensing data fusion on agriculture applications: A review. European Journal of Agronomy, 164, 127478.

Anonymous. 2021. Pathogens, precipitation and produce prices. Nature Climate Change, 11, 635.

Barreñada L, Dhiman P, Timmerman D, Boulesteix A L, Van Calster B. 2024. Understanding overfitting in random forest for probability estimation: A visualization and simulation study. Diagnostic and Prognostic Research, 8, 14.

Baste S, Klotz D, Acuña Espinoza E, Bardossy A, Loritz R. 2025. Unveiling the limits of deep learning models in hydrological extrapolation tasks. Hydrology and Earth System Sciences, 29, 5871-5891.

Cao M, Bai S, Tang P, Xu H, Wang Y, Zhou G. 2025. Estimation of the pre-winter population of Chilo suppressalis in rice field based on unmanned aerial vehicle multi-spectral remote sensing. Jiangsu Journal of Agricultural Sciences, 41, 305–312. (in Chinese)

Caubel J, Launay M, Ripoche D, Gouache D, Buis S, Huard F, Huber L, Brun F, Bancal M O. 2017. Climate change effects on leaf rust of wheat: Implementing a coupled crop-disease model in a French regional application. European Journal of Agronomy, 90, 53–66.

Chacón-Maldonado A M, Asencio-Cortés G, Troncoso A. 2025. A multimodal hybrid deep learning approach for pest forecasting using time series and satellite images. Information Fusion, 124, 103350.

Chen C J, Li Y S, Tai C Y, Chen Y C, Huang Y M. 2022. Pest incidence forecasting based on Internet of Things and long short-term memory network. Applied Soft Computing, 124, 108895.

Chen H, Lu Y, Xu J, Wang Q. 2020. Occurrence and damage of striped rice stem borers in different cultivation systems in Linhai. Journal of Zhejiang Agricultural Sciences, 61, 1384–1386. (in Chinese)

Chen P, Xiao Q, Zhang J, Xie C, Wang B. 2020. Occurrence prediction of cotton pests and diseases by bidirectional long short-term memory networks with climate and atmosphere circulation. Computers and Electronics in Agriculture, 176, 105612.

Dai C, Zhong Y, Yu J, Cheng Y, Hou M. 2023. Behavioral and physiological adaptation to soil moisture in the overwintering larvae of the rice stem borer in the subtropics. Agriculture, 13, 2177.

Ding L, Lin P, Pan W. 2019. Changes in occurrence of Chilo suppressalis under different meteorological conditions and analysis. Modernizing Agriculture, 8, 54–56. (in Chinese)

Domingues T, Brandão T, Ferreira J C. 2022. Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey. Agriculture, 12, 1350.

Durai S K S, Shamili M D. 2022. Smart farming using machine learning and deep learning techniques. Decision Analytics Journal, 3, 100041.

FAO (Food and Agriculture Organization of the United Nations). 2025. World food situation. [2025-11-13]. https://www.fao.org/worldfoodsituation/csdb/en

Gao Y, Chen X, Chen Z, Bao Y, Yang R, Liu T, Zhai B. 2008. Dynamic analysis on the migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) by Doppler Insect Monitoring Radar and numerical simulation. Acta Ecologica Sinica, 28, 5238–5247. (in Chinese)

Gao Y, Li D, Li D, Xu P, Mao K, Zhang Y, Qin X, Tang T, Wan H, Li J, Guo M, He S. 2020. Efficacy of an adhesive nanopesticide on insect pests of rice in field trials. Journal of Asia-Pacific Entomology, 23, 1222–1227.

Gao Y, Yin F, Hong C, Chen X, Deng H, Liu Y, Li Z, Yao Q. 2025. Intelligent field monitoring system for cruciferous vegetable pests using yellow sticky board images and an improved Cascade R-CNN. Journal of Integrative Agriculture, 24, 220-234.

Ge W, Qiao S, Liu C, Guo F, Wang S, Sun H, Liu Y, Yang F, Wu S, Gao C. 2025. Baseline establishment, susceptibility monitoring and risk assessment of cyproflanilide, a novel meta-diamide insecticide, against Chilo suppressalis (Lepidoptera: Crambidae) in China. Journal of Integrative Agriculture, 24, 4342-4354.

Gitelson A A, Kaufman Y J, Merzlyak M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.

Gitelson A A, Viña A, Arkebauer T J, Rundquist D C, Keydan G, Leavitt B. 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30, 1–4.

Gu Q, Tian J, Li X, Jiang S. 2022. A novel random forest integrated model for imbalanced data classification problem. Knowledge-Based Systems, 250, 109050.

Gülmez B. 2024. Advancements in rice disease detection through convolutional neural networks: A comprehensive review. Heliyon, 10, e33328.

He Y, Wang G, Ren Y, Gao S, Chu D, McKirdy S J. 2024. Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions. Journal of Integrative Agriculture, 23, 3576-3591.

Huang M, Ge X, Shi H, Tong Y, Shi J. 2019. Prediction of current and future potential distributions of the eucalyptus pest Leptocybe invasa (Hymenoptera: Eulophidae) in China using the CLIMEX model. Pest Management Science, 75, 2958–2968.

Huang W, Zhang J, Huang L, Dong Y, Zhao J, Lin Y, Liu L M A, Ruan C, Huiqin M A, Chao R. 2025. Progress of vegetation pest and disease monitoring and forecasting. National Remote Sensing Bulletin, 29, 2065–2082.

Huang X, Jiang T, Wu Z, Zhang W, Xiao H. 2020. Overwintering parasitism is positively associated with population density in diapausing larvae of Chilo suppressalis. Journal of Integrative Agriculture, 19, 785-792.

Huete A R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

Ibrahim E A, Salifu D, Mwalili S, Dubois T, Collins R, Tonnang H E Z. 2022. An expert system for insect pest population dynamics prediction. Computers and Electronics in Agriculture, 198, 107124.

Ishiguro S, Li Y, Nakano K, Tsumuki H, Goto M. 2007. Seasonal changes in glycerol content and cold hardiness in two ecotypes of the rice stem borer, Chilo suppressalis, exposed to the environment in the Shonai district, Japan. Journal of Insect Physiology, 53, 392–397.

Jiang X, Zhen J, Miao J, Zhao D, Wang J, Jia S. 2021. Assessing mangrove leaf traits under different pest and disease severity with hyperspectral imaging spectroscopy. Ecological Indicators, 129, 107901.

Jordan C F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50, 663–666.

Li S, Dong P, Zhang H, Xu X, Shi L, Sun T, Qiao H, Yue J, Guo W. 2025. Integrating ecological niche and epidemiological models to predict wheat fusarium head blight using remote sensing and meteorological data. Computers and Electronics in Agriculture, 234, 110255.

Liu J, Bian Y, Zhang Y, Meng Z, Huang C, Zeng J. 2025. Analysis of occurrence trends and causes of major crop diseases and pests in China in 2025. China Plant Protection, 45, 26–29, 44. (in Chinese)

Liu S, Ye F. 2011. Migration patterns of Scirpophaga incertulas and Chilo suppressalis in rice and their application in forecasting. Inner Mongolia Agricultural Science and Technology, 3, 68. (in Chinese)

Lu M X, Cao S S, Liu Z X, Wang X, Du Y Z. 2014. Heat tolerance of developmental and seasonal stages of Chilo suppressalis. Entomologia Experimentalis et Applicata, 152, 91–99.

Lu Y, Wang G, Zhong L, Zhang F, Bai Q, Zheng X, Lu Z. 2017. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China. Crop Protection, 100, 196–202.

Ma C, Liang Y, Lyu X. 2019. Weather analysis to predict rice pest using neural network and DS evidential theory. In: 2019 International Conference on Cyber-enabled Distributed Computing and Knowledge Discovery (CyberC). Institute of Electrical and Electronics Engineers, Guilin, China. pp. 277–283.

Majidi-Shilsar F, Tabatabaei S A, Jalaeian M, Fahrapour-Haghani A, Ebadi A, Khoshkdaman M. 2023. Use of sex pheromone in population control and damage reduction of striped rice stem borer Chilo suppressalis in paddy fields. Applied Entomology and Phytopathology, 91, 61–71.

Makori D M, Abdel-Rahman E M, Odindi J, Mutanga O, Landmann T, Tonnang H E Z. 2024. Multi-pronged abundance prediction of bee pests’ spatial proliferation in Kenya. International Journal of Applied Earth Observation and Geoinformation, 128, 103738.

Mao C, Zhu X, Wang P, Sun Y, Huang R, Zhao M, Hull J J, Lin Y, Zhou F, Chen H, Ma W. 2022. Transgenic double-stranded RNA rice, a potential strategy for controlling striped stem borer (Chilo suppressalis). Pest Management Science, 78, 785–792.

McFeeters S K. 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425–1432.

Merzlyak M N, Gitelson A A, Chivkunova O B, Rakitin V Y. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106, 135–141.

Miao J, Guo P, Li H, Wei C, Liu Q, Gong Z, Duan Y, Li T, Jiang Y, Feng H, Wu Y. 2021. Low barometric pressure enhances tethered-flight performance and reproduction of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Journal of Economic Entomology, 114, 620–626.

Milli M. 2025. Designing a residual-enhanced hybrid Prophet–LSTM framework for urban air pollution forecasting in Beijing. Scientific Reports, 15, 43646.

Mo W, Li Q, Lu Z, Ullah F, Guo J, Xu H, Lu Y. 2025. Dynamic monitoring of Chilo suppressalis resistance to insecticides and the potential influencing factors. Plants, 14, 724.

Mukherjee R, Ghosh A, Chakraborty C, De J N, Mishra D P. 2025. Rice leaf disease identification and classification using machine learning techniques: A comprehensive review. Engineering Applications of Artificial Intelligence, 139, 109639.

Neta A, Levi Y, Morin E, Morin S. 2023. Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts. Ecological Modelling, 480, 110326.

Pan W, Feng Y, Qi Z, Wang Z. 2025. Research on the evolutionary pattern of the population size of Chilo suppressalis in the coastal rice area of Zhejiang. Acta Agriculturae Shanghai, 41, 77–82. (in Chinese)

Penuelas J, Baret F, Filella I. 1995. Semi-empirical indices to assess carotenoids/chlorophyll alpha ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230

Poggi S, Le Cointe R, Riou J B, Larroudé P, Thibord J B, Plantegenest M. 2018. Relative influence of climate and agroenvironmental factors on wireworm damage risk in maize crops. Journal of Pest Science, 91, 585–599.

Rhodes M W, Bennie J J, Spalding A, Ffrench-Constant R H, Maclean I M D. 2022. Recent advances in the remote sensing of insects. Biological Reviewsy, 97, 343–360.

Rikimaru A, Roy P S, Miyatake S. 2002. Tropical forest cover density mapping. Tropical Ecology, 43, 39-47.

Roujean J L, Breon F M. 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51, 375–384.

Rouse J W, Haas R H, Schell J A, Deering D W. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In: ‌Proceedings of the Third NASA Earth Resources Technology Satellites Symposium. National Aeronautics and Space Administration,Washington, DC, USA. p. 307.

Ruan C, Dong Y, Huang W, Huang L, Ye H, Ma H, Guo A, Sun R. 2022. Integrating remote sensing and meteorological data to predict wheat stripe rust. Remote Sensing, 14, 1221.

Shamakhi L, Zibaee A, Karimi-Malati A, Hoda H. 2018. A laboratory study on the modeling of temperature-dependent development and antioxidant system of Chilo suppressalis (Lepidoptera: Crambidae). Journal of Insect Science Online, 18, 35.

Shen J, Xiao S, Zheng W, Chai W, Yao H. 2025. Effect of sex-pheromone-trap intelligent monitoring on Chilo suppressalis. China Rice, 31, 89–93. (in Chinese)

Skawsang S, Nagai M, Tripathi N K, Soni P. 2019. Predicting rice pest population occurrence with satellite-derived crop phenology, ground meteorological observation, and machine learning: A case study for the central plain of Thailand. Applied Sciences, 9, 4846.

Sriwanna K. 2022. Weather-based rice blast disease forecasting. Computers and Electronics in Agriculture, 193, 106685.

Subedi B, Poudel A, Aryal S. 2023. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agricultural and Food Research, 14, 100733.

Sudha Rani D, Venkatesh M N, Naga Satya Sri C H, Anand Kumar K. 2018. Remote sensing as pest forecasting model in agriculture. International Journal of Current Microbiology and Applied Sciences, 7, 2680–2689.

Tan S, Liang Y, Zheng R, Yuan H, Zhang Z, Long C. 2021. Dynamic prediction of Chilo suppressalis occurrence in rice based on deep learning. Processes, 9, 2166.

Uusitalo R, Siljander M, Culverwell C L, Mutai N C, Forbes K M, Vapalahti O, Pellikka P K E, 2019. Predictive mapping of mosquito distribution based on environmental and anthropogenic factors in Taita Hills, Kenya. International Journal of Applied Earth Observation and Geoinformation, 76, 84–92.

Wang L, Ma H, Li J, Gao Y, Fan L, Yang Z, Yang Y, Wang C. 2022. An automated extraction of small- and middle-sized rice fields under complex terrain based on SAR time series: A case study of Chongqing. Computers and Electronics in Agriculture, 200, 107232.

Wang L, Wang T, Ma H, Lu P, Sun W, Fan L, Wang H, Wu Y, Wang Y. 2024. Time-series SAR monitoring of rice in multiple cropping modes combining statistical and phenological characteristics. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–11.

Waters E K, Chen C C M, Rahimi Azghadi M. 2025. Sugarcane health monitoring with satellite spectroscopy and machine learning: A review. Computers and Electronics in Agriculture, 229, 109686.

Wu Q, Hu G, Tuan H A, Chen X, Lu M, Zhai B, Chapman J W. 2019. Migration patterns and winter population dynamics of rice planthoppers in Indo-China: New perspectives from field surveys and atmospheric trajectories. Agricultural and Forest Meteorology, 265, 99–109.

Wu T, Hao S, Kang L. 2021. Effects of soil temperature and moisture on the development and survival of grasshopper eggs in Inner Mongolian grasslands. Frontiers in Ecology and Evolution, 9, 727911.

Xian X, Zhao H, Guo J, Zhang G, Liu H, Liu W, Wan F. 2023. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change. Journal of Integrative Agriculture, 22, 244-2455.

Ye Z, Liu Y, Ye F, Li H, Luo J, Guo J, Feng Z, Hong C, Li L, Liu S, Yang B, Liu W,Yao Q. 2025. Automatic diagnosis of agromyzid leafminer damage levels using leaf images captured by AR glasses. Journal of Integrative Agriculture, 24, 1-13.

Zhai J, Zhao L, Gao D, Xie S, Xu Liao, Wu J. 2024. Preliminary study on control of Chilo suppressalis by nanopesticides. China Rice, 30, 95–97, 101. (in Chinese)

Zhou J, Tu L, Chen H, Jiang T, Lin J. 2022. Deep learning-based rice paddy extraction by fusing spatial and temporal remote sensing information. Geospatial Information, 20, 39–44. (in Chinese) 

[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jinbu Wang, Wencheng Zong, Liangyu Shi, Mianyan Li, Jia Li, Deming Ren, Fuping Zhao, Lixian Wang, Ligang Wang. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. >Journal of Integrative Agriculture, 2026, 25(2): 775-787.
[3] Yaling Yu, Hongfan Ge, Hang Gao, Yanyan Zhang, Kangping Liu, Zhenlei Zhou. Changes of bone remodeling, cartilage damage and apoptosis-related pathways in broilers with femoral head necrosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 788-802.
[4] Hui Song, Meiran Li, Zhenquan Duan. Current status of the genetic transformation of Arachis plants[J]. >Journal of Integrative Agriculture, 2026, 25(2): 577-584.
[5] Yue Song, Heng Wang, Mingyang Wang, Yumin Wang, Xiuxiang Lu, Wenjie Fan, Chen Yao, Pengxiang Liu, Yanjie Ma, Shengli Ming, Mengdi Wang, Lijun Shi. A novel TLR7 agonist exhibits antiviral activity against pseudorabies virus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 803-813.
[6] Qiuling Huang, Yan Liao, Chunhui Huang, Huan Peng, Lingchiu Tsang, Borong Lin, Deliang Peng, Jinling Liao, Kan Zhuo. Integrative identification of Aphelenchoides fragariae (Nematoda: Aphelenchoididae) parasitizing Fuchsia hybrid in China[J]. >Journal of Integrative Agriculture, 2026, 25(2): 769-774.
[7] Xijun Wang, Hong Huo, Lei Shuai, Jinying Ge, Liyan Peng, Jinming Wang, Shuang Xiao, Weiye Chen, Zhiyuan Wen, Jinliang Wang, Zhigao Bu. Evaluation of safety and immunogenicity of a genetically modified rabies virus for use as an oral vaccine in several non-target species[J]. >Journal of Integrative Agriculture, 2026, 25(2): 814-819.
[8] Jing Gao, Shenglan Li, Yi Lei, Qi Wang, Zili Ning, Zhaohong Lu, Xianming Tan, Mei Xu, Feng Yang, Wenyu Yang. Delayed photosynthesis response causes carbon assimilation reduction in soybean under fluctuating light[J]. >Journal of Integrative Agriculture, 2026, 25(2): 648-658.
[9] Lihong Ma, Pengtao Wang, QianHao Zhu, Xinqi Cheng, Tao Zhang, Xinyu Zhang, Huaguo Zhu, Zuoren Yang, Jie Sun, Feng Liu. Unbalanced lipid metabolism in anther, especially the disorder of the alpha-linolenic acid metabolism pathway, leads to cotton male sterility[J]. >Journal of Integrative Agriculture, 2026, 25(2): 610-623.
[10] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[11] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[12] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[13] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[14] Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022[J]. >Journal of Integrative Agriculture, 2026, 25(2): 436-447.
[15] Xi Chen, Khalid Ayesha, Xue Wen, Yanan Zhang, Mengru Dou, Kexuan Jia, Yong Wang, Yuling Li, Feng Sun, Guotian Liu, Yan Xu. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes[J]. >Journal of Integrative Agriculture, 2026, 25(2): 721-733.
No Suggested Reading articles found!