Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Stellera chamaejasme L. induced changes to soil in Chinese grasslands vary with context and location

Wei He1, 2*, Jiahuan Li3*, John Scullion4, Na Li1, Congcong Xu1, Jun Luo1, Mike Wilkinson4, Lifen Hao5, 6, Yuyu Li5, 6, Kejian Lin5, 6#, Lizhu Guo5, 6#

1 Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069, China

2 Key Laboratory of Grassland Resources of Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, 010018, China

3 Horticultural College, Shenyang Agricultural University, Shenyang, 110866, China

4 Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3FL, UK 

5 Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China

6 Inner Mongolia Key Laboratory of Grassland Conservation Ecology, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China

 Highlights 

l In contrast to the QT region, where S. chamaejasme soils had higher N but not P, the IM region exhibited no such N increase, and its control soils were low in P.

l Bacterial responses to S. chamaejasme establishment differed regionally, with QT region showing increased relative abundances of some diazotrophs that correlated with soil N, whereas no similar trends were detected in IM region.

l The ability of S. chamaejasme to interact differently with soil microbial communities and nutrients depending on local soil conditions is a key mechanism that may contribute to its successful expansion across diverse grassland ecosystems in China.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

狼毒是中国草原地区常见的有毒植物,其在退化草原上的扩张往往伴随着土壤微生物群落结构的改变和氮积累现象。氮有效性的提升可能进一步增强该物种的竞争优势,从而影响当地植被群落结构。本研究旨在探究狼毒是否在不同土壤背景的区域中引发相似的土壤理化性质及细菌群落结构变化。基于此,我们分别在青藏高原东部高寒草甸(QTn=17)和内蒙古高原中部典型草原(IMn=7)采集了原生植被下(对照, NSc)和狼毒植株下(Sc)的表层土壤样品(0-15cm),并开展对比分析。研究结果显示,狼毒对土壤养分的影响模式在两个区域存在显著差异。在青藏高原地区,狼毒显著提高了土壤氮含量(尤其是铵态氮),但未改变磷含量;而在内蒙古高原地区,狼毒并未影响土壤氮含量,但显著提升了土壤磷水平。与此相应,土壤细菌群落的响应也具有区域特异性:青藏高原地区狼毒土壤中多种固氮菌(如慢生根瘤菌属、中慢生根瘤菌属、叶杆菌属)的相对丰度增加,且与土壤氮含量呈正相关,但在内蒙古高原地区未观测到此趋势。冗余分析表明,土壤铵态氮与在属水平参与土壤氮循环的细菌显著关联;路径分析模型进一步揭示,在青藏高原地区狼毒通过促进土壤氮循环细菌来增加土壤氮含量,而在内蒙古高原地区,狼毒的存在未引起基于氮的土壤变化。此外, 内蒙古高原地区狼毒土壤磷的增加并非源于磷循环细菌相对丰度的上升,推测可能与真菌互作等其他途径有关。综上所述,狼毒在两个区域不同草原生态系统中对土壤产生了差异化的影响。我们推测,狼毒可能具备对土壤条件的可塑性响应能力,这使其土壤效应表现出环境依赖性。本研究首次阐明,狼毒通过差异化调控不同区域土壤的氮磷养分及其相关菌群,形成适应性策略,从而促进其在不同地区的草原上扩张。



Abstract  

Stellera chamaejasme is a pernicious plant of grasslands in China. Its expansion has been linked to changes in the soil microbial community structure and to nitrogen accumulation. Increased nitrogen availability may enhance competitiveness of the weed and disrupt plant community structure. We sought to establish whether presence of this species evokes the same changes to soil properties and microbiome community structure in regions with divergent native soil properties. For this, we compared soil samples collected from under native vegetation (controls) with those taken from beneath S. chamaejasme plants in grasslands of eastern Qinghai–Tibet Plateau (QT) and the middle Inner Mongolia Plateau (IM). In QT, soil beneath S. chamaejasme contained higher nitrogen levels than controls, but not phosphorus. In contrast, S. chamaejasme and control soil samples from IM did not differ in nitrogen content, but S. chamaejasme soil samples had raised soil P. Soil bacterial community responses to S. chamaejasme also differed between regions. S. chamaejasme soils from QT had increased relative abundances of some diazotrophs (Bradyrhizobium, Mesorhizobium, Phyllobacterium) that positively correlated with soil nitrogen but no similar tends were detected in IM soils. Redundancy analysis revealed significant associations between soil ammonium and bacterial genera implicated in soil N-cycles. In QT, modelling suggested that S. chamaejasme increased N-cycling soil bacteria linked to increased available nitrogen. However, in IM soil N-cycling soil bacteria and soil nitrogen levels were unaffected by S. chamaejasme and its presence did not link to N-based soil changes. We conclude that S. chamaejasme evokes different changes to the native soils of these two regions. We postulate that S. chamaejasme may exhibit plasticity in response to soil conditions it encounters and that this may be one reason for its soil impact being context dependent. This divergent interaction between S. chamaejasme and host soils may facilitate further expansion of its current range. 

Keywords:  Stellera chamaejasme              soil ammonium and nitrate       diazotrophs       Qinghai–Tibet plateau       soil phosphorus       Inner Mongolia plateau  
Online: 29 January 2026  
Fund: 

This work was supported by the National Science Foundation of China (32401495 and 32371776), the China Forage and Grass Research System CARS (CARS-34), the Key Laboratory of Grassland Resources of Ministry of Education (2023) in Inner Mongolia Agricultural University, and the UK Biotechnology and Biological Sciences Research Council exchange grant (BB/M027945/1).

About author:  Wei He, E-mail: hewei.scu@gmail.com; Jiahuan Li, E-mail: lijhecol@163.com; #Correspondence Lizhu Guo, E-mail: ellenguo@sina.cn; Kejian Lin, Email: linkejian@caas.cn *These authors contributed equally to this study.

Cite this article: 

Wei He, Jiahuan Li, John Scullion, Na Li, Congcong Xu, Jun Luo, Mike Wilkinson, Lifen Hao, Yuyu Li, Kejian Lin, Lizhu Guo. 2026. Stellera chamaejasme L. induced changes to soil in Chinese grasslands vary with context and location. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.041

Addo M A, Dos Santos P C. 2020. Distribution of nitrogen‐fixation genes in prokaryotes containing alternative nitrogenases. ChemBioChem, 21(12), 1749-1759.

Aldorfová A, Knobová P, Münzbergová, Z. 2020. Plant-soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. Oikos, 129, 1257-1270.

Bagwell C E, Lovell C R. 2000. Persistence of selected Spartina alterniflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability. Applied and Environmental Microbiology, 66, 4625-4633.

Bao S D. 2000. Soil agrochemical analysis. Beijing: China Agriculture Press.

Bao G S, Wang Y Q, Song M L, Wang H S, Yin Y L, Liu S C, Yang Y W, Yang M. 2019. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S. chamaejasme invasion. Acta Prataculturae Sinica, 28(3), 51. (in Chinese)

Barbier E D, Knowler D, Gwatipedza J, Reichard S H, Hodges A R. 2013. Implementing policies to control invasive plant species. BioScience, 63(2), 132-138.

Bever J D. 2002. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society of London, Series B, 269, 2595-2601.

Bever J D. 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.

Boyd E S, Hamilton T L, Peters J W. 2011. An alternative path for the evolution of biological nitrogen fixation. Frontiers in microbiology, 2, 205.

Chao L, Ma X, Tsetsegmaa M, Zheng Y, Qu H, Dai Y, Li J, Bao Y. 2022. Response of soil microbial community composition and diversity at different gradients of grassland degradation in central Mongolia. Agriculture, 12, 1430.

Chen F S, Zeng D H, Fahey T J. 2010. Changes in soil nitrogen availability due to stand development and management practices on semi-arid sandy lands, in northern China. Land Degradation & Development, 20, 481-491.

Chen J, Shen W J, Xu H, Li Y D, Luo T S. 2019. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: A comparison between legume and non-legume plantations. Frontiers in Microbiology, 10, 508.

Cheung S, Morando M, Magasin J, Cornejo-Castillo F M, Zehr J P, Turk-Kubo K A. 2025. NifH gene amplicon sequencing and metagenomic approaches are complementary in assessing diazotroph diversity. ISME communications, 5(1), ycaf038.

Corre M D, Schnabel R R, Stout W L. 2002. Spatial and seasonal variation of gross nitrogen transformations and microbial biomass in a Northeastern US grassland. Soil Biology and Biochemistry, 34(4), 445-457.

Crawford K M, Knight T M. 2017. Competition overwhelms the positive plant–soil feedback generated by an invasive plant. Oecologia, 183, 211-220.

Cui X, Pan Y, Wang Y N, Zheng X N, Gao Y. 2020. Effects of Stellera chamaejasme on small scale community composition and soil physical and chemical properties in degraded grassland. Chinese Journal of Ecology, 39(8), 2581. (in Chinese)

Evans R D, Rimer R, Sperry L, Belnap J. 2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecological Applications, 11(5), 1301. 

Ehrenfeld J G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6, 503-523.

Farrer E C, Birnbaum C, Waryszak P, Halbrook S R, Brady M V, Bumby C R, Candaele H, Kulick N K, Lee S F H, Schroeder C S, Smith M K H, Wilber W. 2021. Plant and microbial impacts of an invasive species vary across an environmental gradient. Journal of Ecology, 109, 2163-2176.  

Forero L E, Grenzer J, Heinze J, Schittko C, Kulmatiski A. 2019. Greenhouse-and field-measured plant-soil feedbacks are not correlated. Frontiers in Environmental Science, doi:10.3389/fenvs.2019.00184.

Gaby J C, Buckley D H. 2012. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE, 7(12), e42149.

Gao F, Li K, Zhao C, Ren H, Nie X, Jia D, Li L, Li Q. 2019. The expansion process of a Stellera chamaejasme population in a degraded alpine meadow of Northwest China. Environmental Science and Pollution Research, 26, 20469-20474.

Gioria M, Hulme P E, Richardson D M, Pyšek P. 2023. Why are invasive plants successful? Annual Review of Plant Biology, 74, 635-670.

Gömöryova E, Hrivnák R, Galvánek D, Kochjarová J, Skokanová K, Slezák M, Svitková I, Singliarová B, Spaniel S, Gömöry D. 2024. Spatial patterns and effects of invasive plants on soil microbial activity and diversity along river corridors. Plant and Soil, doi.org/10.1007/s11104-024-06958-3.

Guo H, Cui H, Jin H, Yan Z, Ding L, Qin B. 2015. Potential allelochemicals in root zone soils of Stellera chamaejasme L. and variations at different geographical growing sites. Plant Growth Regulation, 77, 335-342.

Guo L Z, Li J H, He W, Liu L, Huang D, Wang K. 2019. High nutrient uptake efficiency and high water use efficiency facilitate the spread of Stellera chamaejasme L. in degraded grasslands. BMC Ecology, 19, 50.  

Guo L Z, Zhao H, Zhao X J, Wang K L, Li L, Wang K, Huang D. 2021. Study on life histroy traits of Stellera chamaejasme provide insights into its control on degraded typical steppe. Journal of Environmental Management, 291, 112716.  

Guo L Z, Liu L, Meng H Z, Zhang L, Silva V J, Zhao H, Wang K, He W, Huang D. 2022. Biogeographic patterns of leaf element stoichiometry of Stellera chamaejasme L. in degraded grasslands on Inner Mongolia Plateau and Qinghai-Tibetan Plateau. Plants, 11, 1943.  

Hawkes C V, Wren I F, Herman D J, Firestone M K. 2005. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 8, 976-985.

He W, Detheridge A, Liu Y M, Wang L, Wei H C, Griffith G W, Scullion J, Wei Y H. 2019. Variation in soil fungal composition associated with the invasion of Stellera chamaejasme L. in Qinghai-Tibet Plateau Grassland. Microorganisms, 7(12), 587.

Hu N, Liu Y, Ge X, Dong X, Wang H, Long Y, Wang L. 2023. Mapping the Invasive species Stellera chamaejasme in alpine grasslands using ecological clustering, spectral separability and image classification. Agronomy, 13(2), 593.

Jin H, Yan Z, Liu Q, Yang X, Chen J, Qin B. 2013. Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China. Antonie Van Leeuwenhoek, 104, 949- 963.

Jin H, Yang X, Lu D, Li C, Yan Z, Li X, Zeng L, Qin B. 2015. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach. Antonie Van Leeuwenhoek, 108, 835-850.

Jin H, Yang X Y, Liu R, Yan Z, Li X, Li X, Su A, Zhao Y, Qin B. 2018. Bacterial community structure associated with the rhizosphere soils and roots of Stellera chamaejasme L. along a Tibetan elevation gradient. Annals of Microbiology, 68, 273-286. 

Jiang Y J, Li Q H, Mao W Q, Tang, W T, White Jr J F, Li H Y. 2022. Endophytic bacterial community of Stellera chamaejasme L. and its role in improving host plants' competitiveness in grasslands. Environmental Microbiology, 24(8), 3322-3333.

Jo I, Fridley J D, Frank D A. 2016. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species. New Phytologist, 209, 115-122.

Jo I, Fridley J D, Frank D A, Wilson G W T. 2017. Invasive plants accelerate nitrogen cycling: evidence from experimental woody monocultures. Journal of Ecology, 105, 1105-1110.

Jordan N R, Larson D L, Huerd S C. 2008. Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biological Invasions, 10,177-190.

Klironomos J N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67-70.

Kuypers M, Marchant H, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Review Microbiology, 16, 263-276.

Lambers H. 2022. Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73, 17-42.

Lee M R, Bernhardt E S, van Bodegom P M, Cornelissen J H C, Kattge J, Laughlin D C, Niinemets Ü, Peñuelas J, Reich P B, Yguel B, Wright J P. 2017. Invasive species’ leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta‐analysis. New Phytologist, 213(1), 128-139.

Li Q, Wan F H, Zhao M. 2021A. Distinct soil microbial communities under Ageratina adenophora invasions. Plant Biology, 24, 430-439.

Li W Y, Li F, Zeng H J, Ma L, Qi L Y, Wang X C, Wang W Y, Peng Z, Degen A A, Bai Y F, Zhang T, Huang M, Han J, Shang Z H. 2021B. Diversity and variation of asymbiotic nitrogen-fixing microorganisms in alpine grasslands on the Tibetan Plateau. Frontiers in Ecology and Evolution, 9, 702848.

Li J T, Lu J L, Wang H Y, Fang Z, Wang X J, Feng S W, Wang Z, Yuan T, Zhang S C, Ou S N, Yang X D, Wu Z H, Du X D, Tang LY, Liao B, Shu W S, Jia P, Liang J L. 2021C. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biological Reviews, 96, 2771-2793.  

Li Q, Guo J Y, Zhang H, Zhao M X. 2024A.The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function. Journal of Integrative Agriculture, 23(1), 267-282.

Li J, He J Z, Liu M, Yan Z Q, Xu X L, Kuzyakov Y. 2024B. Invasive plant competitivity is mediated by nitrogen use strategies and rhizosphere microbiome. Soil Biology and Biochemistry, 192, 109361.

Li K, Lin H, Han M, Yang L. 2024C. Soil metagenomics reveals the effect of nitrogen on soil microbial communities and nitrogen-cycle functional genes in the rhizosphere of Panax ginseng. Frontiers in Plant Science, 15,1411073.

Liao C Z, Peng R H, Luo Y Q, Zhou X H, Wu X W, Fang C M, Chen J K, Li B. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytologist, 177, 706-714.

Liu J, Cai H, Chen S, Pi J, Zhao L. 2023. A review on soil nitrogen sensing technologies: challenges, progress and perspectives. Agriculture, 13(4), 743.

Luo X Z, Liu N, Lambers H, Cai H Y, Hou E Q, Huang Y, Jian S G, Kuang Y W, Wen D Z, Zhang L L. 2024. Plant invasion alters soil phosphorus cycling on tropical coral islands: Insights from Wollastonia biffora and Chromolaena odorata invasions. Soil Biology and Biochemistry, 193, 109412.

Ma J G, B S, W Y F, Newton P, Hou F J. 2020. Differences in soil ammonia oxidizing bacterial communities under unpalatable (Stellera chamaejasme L.) and palatable (Elymus nutans Griseb.) plants growing on the Qinghai Tibetan Plateau. Soil Biology and Biochemistry, 144, 107779.

Marra L M, Soares C R F S, de Oliveira S M, Ferreira P A A, Soares B L, de Fráguas Carvalho R, de Lima J M, de Souza Moreira F M. 2012. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and Soil, 357, 289-307.

Maxwell T L, Canarini A, Bogdanovic I, Böckle T, Martin V, Noll L, Prommer J, Séneca J, Simon E, Piepho H P, Herndl M. 2022. Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO2, warming, and drought. Global Change Biology, 28(7), 2425-2441.

Meng H Z, Guo L Z, Shen F Y, Li J H, Scullion J, He W. 2024. Grasses and forbs respond differently to inoculation with Stellera chamaejasme soil bota. Land Degradation & Development, 35, 4754-4765.

Moran J, McGrath C. 2021. Comparison of methods for mapping rhizosphere processes in the context of their surrounding root and soil environments. Biotechniques, 71(6), 604-614.

Munoz‐Ucros J, Zwetsloot M J, Cuellar‐Gempeler C, Bauerle T L. 2021. Spatiotemporal patterns of rhizosphere microbiome assembly: from ecological theory to agricultural application. Journal of Applied Ecology, 58(5), 894-904.

Mus F, Alleman A B, Pence N, Seefeldt LC, Peters J W. 2018. Exploring the alternatives of biological nitrogen fixation. Metallomics, 10(4), 523-538.

Oburger E, Schmidt H. 2016. New methods to unravel rhizosphere processes. Trends in Plant Science, 21(3), 243-255.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. 2016. vegan: community ecology package. R version 24-1.

Packer A, Clay K. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278-281.

Pantigoso H A, Manter D K, Fonte S J, Vivanco J M. 2023. Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria. Scientific Reports, 13, 4050.

Parepa M, Schaffner U, Bossdorf O. 2013. Help from under ground: soil biota facilitate knotweed invasion. Ecosphere, 4(2), 31.

Park D. 1963. The ecology of soil-borne fungal disease. Annual Review of Phytopathology, 1, 241-258.

Parker S S, Schimel J P. 2011. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Applied Soil Ecology, 48(2), 185-192.

Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens I A. 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934.

Prescott C E, Zukswert J M. 2016. Invasive plant species and litter decomposition: time to challenge assumptions. New Phytologist, 209, 5-7.

Raven JA. 2012. Protein turnover and plant RNA and phosphorus requirements in relation to nitrogen fixation. Plant Science, 188, 25-35.

Reed S C, Cleveland C C, Townsend A R. 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution and Systematics, 42, 489-512.

Reinhart K O, Callaway R M. 2006. Soil biota and invasive plants. New phytologist, 170(3), 445-457.

Ren T T, He N P, Liu Z G, Li M X, Zhang J H, Li A, Wei C Z, Lu X T, Han X G. 2021. Environmental filtering rather than phylogeny determines plant leaf size in three floristically distinctive plateaus. Ecological Indicators, 130, 108049.

Ribeiro P C D, Menendez E, da Silva D L, Bonieck D, Ramirez-Bahena M H, Resende-Stoianoff M A, Peix A, Velazquez E, Mateos P F, Scotti M R. 2017. Invasion of the Brazilian campo rupestre by the exotic grass Melinis minutiflora is driven by the high soil N availability and changes in the N cycle. Science of Total Environment, 577, 202-211.

Sharma G P, Raghubanshi A S. 2009. Lantana invasion alters soil nitrogen pools and processes in the tropical dry deciduous forest of India. Applied Soil Ecology, 42(2), 134-140.

Stefanowicza A M, Staneka M, Majewskab M L, Nobisb M, Zubekb S. 2019. Invasive plant species identity affects soil microbial communities in a mesocosm experiment. Applied Soil Ecology, 136, 168-177.

Sun G, Luo P, Wu N, Qiu P F, Gao Y H, Chen H, Shi F S. 2009. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology and Biochemistry, 41(1), 86-91.

Sun H R, Liu J Y, Wu J H, Hu H Y, Chen Q B, Fang H Y, Tao K. 2024. Effects of alpine grassland degradation on soil microbial community structure and metabolic activity in the Qinghai-Tibet Plateau. Applied soil ecology200, 105458.

Sun Y Y, Zhang Q X, Zhao Y P, Diao Y H, Gui F R, Yang G Q. 2021. Journal of Integrative Agriculture, 20(5), 1327-1335.

Theoharides K A, Dukes J S. 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176(2), 256-273.

Thorpe A S, Archer V, DeLuca T H. 2006. The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Applied Soil Ecology, 32, 118-122.

Trognitz F, Hackl E, Widhalm S, Sessitsch A. 2016. The role of plant-microbiome interactions in weed establishment and control. FEMS Microbiology Ecology, 92, 1-15.

Wang C, Zhou J, Liu J, Jiang K, Du D. 2017. Responses of soil N-fixing bacteria communities to Amaranthus retroflexus invasion under different forms of N deposition. Agriculture, Ecosystems & Environment, 247, 329-336.

Wang J C, Zhu Y G, Ge Y. 2024. Global distribution pattern of soil phosphorus-cycling microbes under the influence of human activities. Global Change Biology, 30, e17477.

Wang Z Q, Zhang Y, Wang Y, Cui Y N, Cao C Y. 2024. Effect of revegetation on soil nitrogen-fixation and carbon-fixation microbial communities in the Horqin Sandy Land, China. Chinese Journal of Applied Ecology, 35(1), 31-40.

Wang J L, Liu C, Lei L, Li X Z, Yao M J. 2022. Asymbiotic nitrogen-fixing bacteria and their nitrogen fixation potential. Acta Microbiologica Sinica, 62(8), 2861-2878.

Wang H, Yang Q, Wang S. 2025. Metagenomic insights into the impact of tillage practices on soil nutrient cycling and wheat yield. Science of The Total Environment, 978, 179427.

Wu X F, Yang J J, Ruan H, Wang S N, Yang Y R, Naeem I, Wang L, Liu L, Wang D L. 2021. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecological Indicators, 129, 107989.

Xiao D, Xiao L M, Che R X, Tan Y J, Liu X, Yang R, Zhang W, He X Y, Wang K L. 2020. Phosphorus but not nitrogen addition significantly changes diazotroph diversity and community composition in typical karst grassland soil. Agriculture, Ecosystems & Environment, 301, 106987.

Xu Y D, Wang T, Li H, Ren C J, Chen J W, Yang G H, Han X H, Feng Y Z, Ren G X, Wang X J. 2019. Variations of soil nitrogen-fixing microorganism communities and nitrogen fractions in a Robinia pseudoacacia chronosequence on the Loess Plateau of China. Catena, 174, 316-323.

Xiong Q, Hu J, Wei H, Zhang H, Zhu, J. 2021. Relationship between plant roots, rhizosphere microorganisms, and nitrogen and its special focus on rice. Agriculture, 11(3), 234.

Xun W B, Liu Y P, Li W, Ren Y, Xiong W, Xu Z H, Zhang N, Miao Y Z, Shen Q R, Zhang R F. 2021. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome, 9, 35.

Yahdjian L, Gherardim L, Sala O E. 2011. Nitrogen limitation in arid-subhumid ecosystems: A meta-analysis of fertilization studies. Journal of Arid Environment, 75, 675-680. 

Yan Z Q, Zeng L M, Jin H, Qin B. 2014. Potential ecological roles of flavonoids from Stellera chamaejasme. Plant Signaling & Behavior, 10(3), e1001225.

Yang S S, Sun J Y, Liu C, Li S Y, Wang C, Wei G H, Chen C, Chen W M. 2024. Stellera chamaejasme expansion promotes the restoration of soil microbial diversity and ecosystem multifunctionality in degraded grasslands. Catena, 241, 108020.

Yu R, Li X, Xiao Z, Lambers H, Li L. 2020. Phosphorus facilitation and covariation of root traits in steppe species. New Phytologist, 226, 1285-1298.

Zeng Q X, Zhang Q F, Fan Y X, Gao Y L, Yuan X C, Zhou J C, Dai H, Chen Y M. 2024. Phosphorus availability regulates nitrogen fixation rate through a key diazotrophic assembly: evidence from a subtropical Moso bamboo forest subjected to nitrogen application. Science of the Total Environment, 912, 169740.

Zhang R Y, Qu S M, Zhang B, Gao Y, Xing F. 2023. Interactive effects between the invasive weed Stellera chamaejasme and grass: can arbuscular mycorrhizal fungi and fungal pathogens coregulate interspecific relationships? Frontiers in Microbiology, 14, 1236891.

Zhang Y, Cui Z, Wang T, Cao C. 2021. Expansion of native plant Stellera chamaejasme L. alters the structure of soil diazotrophic community in a salinized meadow grassland, northeast China. Agronomy, 11, 2085.

Zhang Y H, Goncalves P, Copeland E, Qi S S, Dai Z C, Li G L, Wang C Y, Du D L, Thomas T. 2020. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biology and Biochemistry, 143, 107739.

Zhao Y, Ling N, Liu X, Li C, Jing X, Hu J, Rui J. 2024. Altitudinal patterns of alpine soil ammonia-oxidizing community structure and potential nitrification rate. Applied and Environmental Microbiology, 90(3), e00070-24.

Zhou J, Li X L, Peng F, Li C Y, Lai C M, You Q G, Xue X, Wu Y H, Sun H Y, Chen Y, Zhong H T, Lambers H. 2021. Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus- acquisition strategies in an alpine meadow on the Qinghai- Tibetan Plateau. Global Change Biology, 27, 6578-6591.

van der Heijden M G A, Bardgett R D, van Straalen N M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.

van der Putten W H, Klironomos J N, Wardle D A. 2007. Microbial ecology of biological invasions. The ISME Journal, 1, 28-37.

van der Putten W H, Van Dijk C, Peters B A M. 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature362, 53-56.

[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jinbu Wang, Wencheng Zong, Liangyu Shi, Mianyan Li, Jia Li, Deming Ren, Fuping Zhao, Lixian Wang, Ligang Wang. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. >Journal of Integrative Agriculture, 2026, 25(2): 775-787.
[3] Yaling Yu, Hongfan Ge, Hang Gao, Yanyan Zhang, Kangping Liu, Zhenlei Zhou. Changes of bone remodeling, cartilage damage and apoptosis-related pathways in broilers with femoral head necrosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 788-802.
[4] Hui Song, Meiran Li, Zhenquan Duan. Current status of the genetic transformation of Arachis plants[J]. >Journal of Integrative Agriculture, 2026, 25(2): 577-584.
[5] Yue Song, Heng Wang, Mingyang Wang, Yumin Wang, Xiuxiang Lu, Wenjie Fan, Chen Yao, Pengxiang Liu, Yanjie Ma, Shengli Ming, Mengdi Wang, Lijun Shi. A novel TLR7 agonist exhibits antiviral activity against pseudorabies virus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 803-813.
[6] Qiuling Huang, Yan Liao, Chunhui Huang, Huan Peng, Lingchiu Tsang, Borong Lin, Deliang Peng, Jinling Liao, Kan Zhuo. Integrative identification of Aphelenchoides fragariae (Nematoda: Aphelenchoididae) parasitizing Fuchsia hybrid in China[J]. >Journal of Integrative Agriculture, 2026, 25(2): 769-774.
[7] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[8] Xijun Wang, Hong Huo, Lei Shuai, Jinying Ge, Liyan Peng, Jinming Wang, Shuang Xiao, Weiye Chen, Zhiyuan Wen, Jinliang Wang, Zhigao Bu. Evaluation of safety and immunogenicity of a genetically modified rabies virus for use as an oral vaccine in several non-target species[J]. >Journal of Integrative Agriculture, 2026, 25(2): 814-819.
[9] Jing Gao, Shenglan Li, Yi Lei, Qi Wang, Zili Ning, Zhaohong Lu, Xianming Tan, Mei Xu, Feng Yang, Wenyu Yang. Delayed photosynthesis response causes carbon assimilation reduction in soybean under fluctuating light[J]. >Journal of Integrative Agriculture, 2026, 25(2): 648-658.
[10] Lihong Ma, Pengtao Wang, QianHao Zhu, Xinqi Cheng, Tao Zhang, Xinyu Zhang, Huaguo Zhu, Zuoren Yang, Jie Sun, Feng Liu. Unbalanced lipid metabolism in anther, especially the disorder of the alpha-linolenic acid metabolism pathway, leads to cotton male sterility[J]. >Journal of Integrative Agriculture, 2026, 25(2): 610-623.
[11] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[12] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[13] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[14] Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022[J]. >Journal of Integrative Agriculture, 2026, 25(2): 436-447.
[15] Xi Chen, Khalid Ayesha, Xue Wen, Yanan Zhang, Mengru Dou, Kexuan Jia, Yong Wang, Yuling Li, Feng Sun, Guotian Liu, Yan Xu. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes[J]. >Journal of Integrative Agriculture, 2026, 25(2): 721-733.
No Suggested Reading articles found!