Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimizing sowing method and density of broomcorn millet (Panicum miliaceum L.) to improve lodging resistance and yield

Ruiyun Li1, Shaopeng Yu1, Jiayue Zhou1, Ziyang Lu1, Mingrui Zhao1, Xuwen Su1, Qinghua Yang1, Yuhao Yuan2, Jinfeng Gao1#, Baili Feng1# 

1 Northwest A&F University, College of Agronomy/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, China

2 National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China

 Highlights 

Wide-range sowing combined with moderate density can enhance the lodging resistance and yield of broomcorn millet.

Compared to row sowing and hole sowing, the wide-range sowing method demonstrates stronger lodging resistance.

It has been confirmed that the optimal agronomic combination is wide-range sowing with a planting density of 9×105 plants ha-1.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

全球极端恶劣气候的频发导致作物倒伏现象显著增加,造成减产并威胁粮食安全。糜子主要种植在农业技术相对落后的边际土地,不合理的播种方式和密度加剧了其倒伏问题,制约了产量提升。本研究旨在探究不同播种方式和密度对糜子抗倒伏性及产量的影响,旨在优化栽培技术以提升抗倒伏能力和产量。本试验以陕糜2号为材料,设置条播、穴播和宽幅播种三种播种方式,以及D1-D3三种播种密度(分别为6×109×101.2×10 plants ha-1),系统评估其对倒伏相关性状及产量变化的影响。结果表明:随着播种密度增加,糜子总干物质呈下降趋势,但宽幅播种在高密度下仍能保持较大叶面积和较好的生长状态。宽幅播种在各密度条件下均表现出更优的茎秆抗折力,同时优化了株高和重心高度,从而综合提升了抗倒伏能力。此外,相同密度下宽幅播种的机械组织结构优于条播和穴播,促进了木质素和纤维素的积累,进一步增强了糜子的抗倒伏性。综合来看,建议当地糜子生产采用宽幅播种结合D2密度,该组合可获得较低倒伏率和较高产量。本研究为优化糜子种植策略提供了理论依据,表明适宜的播种方式与密度配合能有效提高抗倒伏能力和产量。

 



Abstract  

The frequent occurrence of extreme adverse climatic conditions worldwide has led to a significant increase in crop lodging, resulting in reduced yields and posing a threat to food security. Broomcorn millet is mainly cultivated in marginal land where agricultural practices are relatively less advanced. Improper sowing methods and density have exacerbated the lodging issue of broomcorn millet, hindering yield increase. The aim of this study was to explore the impact of different sowing methods and densities on the lodging resistance and yield of broomcorn millet, aiming to optimize cultivation techniques for enhanced lodging resistance and higher yields. The experiment was conducted using the Shaanxi broomcorn millet No. 2 variety, with three sowing methods (row sowing, hole sowing, and wide-range sowing) and three sowing densities (D1-D3, 6×105, 9×105, and 1.2×106 plants ha-1, respectively) to assess the impact on lodging-related characteristics and yield changes. The results showed that as sowing density increased, the total dry matter of broomcorn millet decreased. However, wide-range sowing maintained a larger leaf area and better growth status at higher densities. Wide-range sowing exhibited superior stem breaking resistance under all density conditions, optimizing both plant height and the height of the center of gravity, thereby enhancing overall lodging resistance. Furthermore, the mechanical tissue structure in wide-range sowing was superior to that in row and hole sowing at the same density, promoting lignin and cellulose accumulation, thereby strengthening broomcorn millet's lodging resistance. Based on these findings, it is recommended that local broomcorn millet production adopt wide-range sowing with a D2 density, as this combination results in a lower lodging rate and higher yields. This study provides a theoretical foundation for optimizing broomcorn millet planting strategies, demonstrating that a suitable combination of sowing method and density can effectively improve lodging resistance and yield.

Keywords:  broomcorn millet       sowing method              sowing density              lodging resistance              yield  
Online: 14 January 2026  
Fund: 

This work was supported by the basic research plan of natural science in Shaanxi Province, China (2023-JC-QN-0269) and the joint experimental demonstration base of modern agricultural industry in Anyang, Northwest A & F University, China (TG20230848).

About author:  #Correspondence Baili Feng, E-mail: fengbaili@nwsuaf.edu.cn; Jinfeng Gao, E-mail: gaojf7604@126.com

Cite this article: 

Ruiyun Li, Shaopeng Yu, Jiayue Zhou, Ziyang Lu, Mingrui Zhao, Xuwen Su, Qinghua Yang, Yuhao Yuan, Jinfeng Gao, Baili Feng . 2026. Optimizing sowing method and density of broomcorn millet (Panicum miliaceum L.) to improve lodging resistance and yield. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.018

Ahmad I, Ahmad S, Yang X N, Meng X P, Yang B P, Liu T, Han Q F. 2021. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density. Plant Biology Journal, 23, 485–496.

An D, Yang Q, Li G, Dong X, Shen Y. 2025. Nitrogen application improves yield threshold and slows leaf nitrogen loss in mid-upper canopy of forage soybean under high planting density. Industrial Crops and Products, 230, 121007.

Begović L, Abičić I, Lalić A, Lepeduš H, Cesar V, Leljak-Levanić D. 2018. Lignin synthesis and accumulation in barley cultivars differing in their resistance to lodging. Plant Physiology and Biochemistry, 133, 142–148.

Bernhard B J, Below F E. 2020. Plant population and row spacing effects on corn: Plant growth, phenology, and grain yield. Agronomy Journal, 112, 2456–2465.

Bouteska A, Sharif T, Bhuiyan F, Abedin M Z. 2024. Impacts of the changing climate on agricultural productivity and food security: Evidence from Ethiopia. Journal of Cleaner Production, 449, 141793.

Burton A B, Kemanian A R. 2022. Maize yield in response to alternating low-and high-density rows of diverse hybrids. European Journal of Agronomy, 135, 126472.

Chen W, Jia B, Chen J, Feng Y, Li Y, Chen M, Liu H, Yin Z. 2021. Effects of different planting densities on photosynthesis in maize determined via prompt fluorescence, delayed fluorescence and P700 signals. Plants, 10, 276.

Dai F, Wang Z, Wang H, Zhang W, Zhong T, Tian G. 2023. Vascular bundle characteristics and mechanical properties of Dendrocalamus sinicus. Construction and Building Materials, 363, 129858.

Deng H, Li Y, Ashraf U, Gui R, Wang Z, Nawaz H, Tang X, Duan M, Mo Z. 2023. The application of liquid fertilizer with reduced nitrogen rate improves the lodging resistance in fragrant rice. Journal of Soil Science and Plant Nutrition, 23, 6071–6087.

Ding P, Noor H, Shah A A, Yan Z, Sun P, Zhang L, Li L, Jun X, Sun M, Elansary H O, Gao Z. 2023. Nutrient cycling and nitrogen management impact of sowing method and soil water consumption on yield nitrogen utilization in dryland wheat (Triticum aestivum L.). Agronomy, 13, 1528.

Dreccer M F, Condon A G, Macdonald B, Rebetzke G J, Awasi M A, Borgognone M G, Peake A, Piñera-Chavez F J, Hundt A, Jackway P, McIntyre C L. 2020. Genotypic variation for lodging tolerance in spring wheat: Wider and deeper root plates, a feature of low lodging, high yielding germplasm. Field Crops Research, 258, 107942.

Gao J, Lei M, Yang L, Wang P, Tao H, Huang S. 2021. Reduced row spacing improved yield by optimizing root distribution in maize. European Journal of Agronomy, 127, 126291.

Guha P K, Magar N D, Kommana M, Barbadikar K M, Suneel B, Gokulan C, Lakshmi D V, Patel H K, Sonti R V, Sundaram R M, Madhav M S. 2024. Strong culm: A crucial trait for developing next-generation climate-resilient rice lines. Physiology and Molecular Biology of Plants, 30, 665–686.

Hostetler A N, Erndwein L, Reneau J W, Stager A, Tanner H G, Cook D, Sparks E E. 2022. Multiple brace root phenotypes promote anchorage and limit root lodging in maize. Plant Cell & Environment, 45, 1573–1583.

Khobra R, Sareen S, Meena B K, Kumar A, Tiwari V, Singh G P. 2019. Exploring the traits for lodging tolerance in wheat genotypes: A review. Physiology and Molecular Biology of Plants, 25, 589–600.

Kuai J, Li X, Ji J, Li Z, Xie Y, Wang B, Zhou G. 2021. The physiological and proteomic characteristics of oilseed rape stem affect seed yield and lodging resistance under different planting densities and row spacing. Journal of Agronomy and Crop Science, 207, 840–856.

Kuai J, Sun Y, Zuo Q, Huang H, Liao Q, Wu C, Lu J, Wu J, Zhou G. 2015. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Scientific Reports, 5, 18835.

Lei X, Wu Y, Wang J, Tao J, Wan C, Wang M, Feng B, Wang X, Gao J. 2025. Effects of planting density and NPK-fertilization level on lodging resistance and grain yield of common buckwheat. Field Crops Research, 322, 109738.

Li B, Gao F, Ren B, Dong S, Liu P, Zhao B, Zhang J. 2021a. Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density. Journal of Integrative Agriculture, 20, 2077–2089.

Li C, Li C. 2021b. Ridge-furrow with plastic film mulching system decreases the lodging risk for summer maize plants under different nitrogen fertilization rates and varieties in dry semi-humid areas. Field Crops Research, 263, 108056. 

Li X, Li Z, Xie Y, Wang B, Kuai J, Zhou G. 2021c. An improvement in oilseed rape (Brassica napus L.) productivity through optimization of rice-straw quantity and plant density. Field Crops Research, 273, 108290.

Li Z, Gao G, Xu L, Wang Z, Wang C, Yang T, Kuai J, Wang B, Xu Z, Zhao J, King G J, Wang J, Zhou G. 2024. Reducing nitrogen application at high planting density enhances secondary cell wall formation and decreases stem lodging in rapeseed. European Journal of Agronomy, 156, 127162.

Liang B, Ma Y, Shi K, Chen G, Chen H, Hu Y, Chen P, Pu T, Wu Y, Sun X, Yong T, Liu W, Liu J, Du J, Yang F, Wang X, Yang W. 2023. Appropriate bandwidth achieves a high yield by reducing maize intraspecific competition in additive maize–soybean strip intercropping. European Journal of Agronomy, 142, 126658.

Liao Z, Zeng H, Fan J, Lai Z, Zhang C, Zhang F, Wang H, Cheng M, Guo J, Li Z, Wu P. 2022. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agricultural Water Management, 268, 107688.

Liu L, Liang G, Liu W, Ju Z. 2024. Variation and interrelationships in the growth, yield, and lodging of oat under different planting densities. PeerJ, 12, e17310.

Liu T, Wang Z, Cai T. 2016. Canopy apparent photosynthetic characteristics and yield of two spike-type wheat cultivars in response to row spacing under high plant density. PLoS ONE, 11, e0148582.

Luo J, Li Y, Gao Y, Hai J, Xi L, Liu Y. 2023. Is bunch planting suitable for wheat? An evaluation based on yield and lodging resistance. Field Crops Research, 297, 108934.

Mihretie F A, Tsunekawa A, Haregeweyn N, Adgo E, Tsubo M, Masunaga T, Meshesha D T, Tsuji W, Ebabu K, Tassew A. 2021. Tillage and sowing options for enhancing productivity and profitability of teff in a sub-tropical highland environment. Field Crops Research, 263, 108050.

Peng D, Chen X, Yin Y, Lu K, Yang W, Tang Y, Wang Z. 2014. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Research, 157, 1–7.

Qi B, Hu J, Zhu L, Duan Y, Zhang W, Gou L. 2023. Response of maize stalk to plant density on cellulose accumulation by modulating enzymes activities. Field Crops Research, 304, 109152.

Rihan H Z, Al-Issawi M, Fuller M P. 2017. Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions, 12, 143–157.

Shah A N, Tanveer M, Rehman A U, Anjum S A, Iqbal J, Ahmad R. 2017. Lodging stress in cereal effects and management: An overview. Environmental Science and Pollution Research, 24, 5222–5237.

Shah L, Yahya M, Shah S M A, Nadeem M, Ali A, Ali A, Wang J, Riaz M W, Rehman S, Wu W, Khan R M, Abbas A, Riaz A, Anis G B, Si H, Jiang H, Ma C. 2019. Improving lodging resistance: Using wheat and rice as classical examples. International Journal of Molecular Sciences, 20, 4211.

Shao H, Xia T, Wu D, Chen F, Mi G. 2018. Root growth and root system architecture of field-grown maize in response to high planting density. Plant and Soil, 430, 395–411.

Sun Q, Gu X, Chen L, Xu X, Wei Z, Pan Y, Gao Y. 2022. Monitoring maize canopy chlorophyll density under lodging stress based on UAV hyperspectral imagery. Computers and Electronics in Agriculture, 193, 106671.

Toulotte J M, Pantazopoulou C K, Sanclemente M A, Voesenek L A C J, Sasidharan R. 2022. Water stress resilient cereal crops: Lessons from wild relatives. Journal of Integrative Plant Biology, 64, 412–430.

Wang C, Hu D, Liu X, She H, Ruan R, Yang H, Yi Z, Wu D. 2015. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 180, 46–53.

Xue J, Gao S, Fan Y, Li L, Ming B, Wang K, Xie R, Hou P, Li S. 2020. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. European Journal of Agronomy, 117, 126073.

Xue J, Gou L, Zhao Y, Yao M, Yao H, Tian J, Zhang W. 2016a. Effects of light intensity within the canopy on maize lodging. Field Crops Research, 188, 133–141.

Xue J, Zhao Y, Gou L, Shi Z, Yao M, Zhang W. 2016b. How high plant density of maize affects basal internode development and strength formation. Crop Science, 56, 3295–3306.

Yuan Y, Liu C, Gao Y, Ma Q, Yang Q, Feng B. 2021. Proso millet (Panicum miliaceum L.): A potential crop to meet demand scenario for sustainable saline agriculture. Journal of Environmental Management, 296, 113216.

Zhan X, Kong F, Liu Q, Lan T, Liu Y, Xu J, Ou Q, Chen L, Kessel G, Kempenaar C, Yuan J. 2022. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Research, 286, 108611.

Zhang L, Liu J, Chen J, Zhang Y, Qin C, Lyu X, Li Z, Ji R, Liu B, Li H, Zhao T. 2025. Regulation of shade avoidance under low-Blue-Light by MTA in soybean. Advanced Science, 12, 2410334.

Zhang P, Gu S, Wang Y, Xu C, Zhao Y, Liu X, Wang P, Huang S. 2023. The relationships between maize (Zea mays L.) lodging resistance and yield formation depend on dry matter allocation to ear and stem. The Crop Journal, 11, 258–268.

Zhao D, Shi W, Xia X, Tang Y, Tao J. 2020. Microstructural and lignin characteristics in herbaceous peony cultivars with different stem strengths. Postharvest Biology and Technology, 159, 111043.

Zhao J, Lai H, Bi C, Zhao M, Liu Y, Li X, Yang D. 2023a. Effects of paclobutrazol application on plant architecture, lodging resistance, photosynthetic characteristics, and peanut yield at different single-seed precise sowing densities. The Crop Journal, 11, 301–310. 

Zhao L, Xie G, Fan M, Anwar S, Zhang Q, Lu J, Zhang L, Gao F, Wang C. 2023b. Mulching and planting density on photosynthesis, lodging resistance, and yield of maize. International Journal of Plant Production, 17, 651–665.

Zhong Y, Zhang T, Qiao W, Liu W, Qiao Y, Li Y, Liu M, Ma Y, Dong B. 2024. Optimizing canopy spacing configuration enhances foxtail millet grain yield and water productivity by improving stalk lodging resistance in the North China Plain. European Journal of Agronomy, 158, 127230.

[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jinbu Wang, Wencheng Zong, Liangyu Shi, Mianyan Li, Jia Li, Deming Ren, Fuping Zhao, Lixian Wang, Ligang Wang. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. >Journal of Integrative Agriculture, 2026, 25(2): 775-787.
[3] Yaling Yu, Hongfan Ge, Hang Gao, Yanyan Zhang, Kangping Liu, Zhenlei Zhou. Changes of bone remodeling, cartilage damage and apoptosis-related pathways in broilers with femoral head necrosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 788-802.
[4] Hui Song, Meiran Li, Zhenquan Duan. Current status of the genetic transformation of Arachis plants[J]. >Journal of Integrative Agriculture, 2026, 25(2): 577-584.
[5] Yue Song, Heng Wang, Mingyang Wang, Yumin Wang, Xiuxiang Lu, Wenjie Fan, Chen Yao, Pengxiang Liu, Yanjie Ma, Shengli Ming, Mengdi Wang, Lijun Shi. A novel TLR7 agonist exhibits antiviral activity against pseudorabies virus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 803-813.
[6] Qiuling Huang, Yan Liao, Chunhui Huang, Huan Peng, Lingchiu Tsang, Borong Lin, Deliang Peng, Jinling Liao, Kan Zhuo. Integrative identification of Aphelenchoides fragariae (Nematoda: Aphelenchoididae) parasitizing Fuchsia hybrid in China[J]. >Journal of Integrative Agriculture, 2026, 25(2): 769-774.
[7] Xijun Wang, Hong Huo, Lei Shuai, Jinying Ge, Liyan Peng, Jinming Wang, Shuang Xiao, Weiye Chen, Zhiyuan Wen, Jinliang Wang, Zhigao Bu. Evaluation of safety and immunogenicity of a genetically modified rabies virus for use as an oral vaccine in several non-target species[J]. >Journal of Integrative Agriculture, 2026, 25(2): 814-819.
[8] Jing Gao, Shenglan Li, Yi Lei, Qi Wang, Zili Ning, Zhaohong Lu, Xianming Tan, Mei Xu, Feng Yang, Wenyu Yang. Delayed photosynthesis response causes carbon assimilation reduction in soybean under fluctuating light[J]. >Journal of Integrative Agriculture, 2026, 25(2): 648-658.
[9] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[10] Lihong Ma, Pengtao Wang, QianHao Zhu, Xinqi Cheng, Tao Zhang, Xinyu Zhang, Huaguo Zhu, Zuoren Yang, Jie Sun, Feng Liu. Unbalanced lipid metabolism in anther, especially the disorder of the alpha-linolenic acid metabolism pathway, leads to cotton male sterility[J]. >Journal of Integrative Agriculture, 2026, 25(2): 610-623.
[11] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[12] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[13] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[14] Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022[J]. >Journal of Integrative Agriculture, 2026, 25(2): 436-447.
[15] Xi Chen, Khalid Ayesha, Xue Wen, Yanan Zhang, Mengru Dou, Kexuan Jia, Yong Wang, Yuling Li, Feng Sun, Guotian Liu, Yan Xu. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes[J]. >Journal of Integrative Agriculture, 2026, 25(2): 721-733.
No Suggested Reading articles found!