Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
The CsRAP2.3-CsUGT78A14 module regulates flavonol biosynthesis in white tea trichomes

Junmei Huang1*, Dafeng Dong1*, Tao Wang1*, Zhidan Chen1, Peitao Lü2#, Weijiang Sun1#, Wen Zeng1, 2#

1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2 State Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China

 Highlights 

Flavonols, especially kaempferol derivatives, are highly accumulated in tea trichomes.

CsRAP2.3 activates CsUGT78A14 expression to enhance flavonol glycosylation.

Overexpression of CsRAP2.3 promotes flavonol biosynthesis in plants.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

茶叶毛状体富含次生代谢物,在茶树抗逆性和品质形成中起着关键作用。然而,相关的特异性代谢物及其调控机制尚不明确。本研究采用超高效液相色谱-串联质谱技术对福鼎大毫茶嫩梢的毛状体及其对应脱毛叶片进行了靶向代谢组学分析,共鉴定到2425种代谢物,其中毛状体与叶片间存在1537个差异积累代谢物。值得注意的是,类黄酮化合物(尤其是山奈酚及其衍生物)在毛状体中显著富集。转录组分析发现447个毛状体特异性高表达基因,这些基因在苯丙烷和类黄酮生物合成通路中显著富集。染色质可及性分析进一步鉴定出ERF转录因子CsRAP2.3为关键调控因子。DNA亲和纯化测序与荧光素酶报告基因实验证明,CsRAP2.3能够结合参与山奈酚糖基化的CsUGT78A14基因启动子。在烟草叶片中瞬时过表达CsRAP2.3可增加黄酮醇代谢物积累。本研究结果表明,CsRAP2.3可能通过调控CsUGT78A14的表达来影响茶树毛状体中黄酮醇的积累,为解析白茶毛状体黄酮醇代谢的分子机制提供了新见解,也为改善茶树抗逆性和品质奠定了理论基础。



Abstract  

Tea trichomes are rich in secondary metabolites and play a crucial role in the stress resistance and quality formation of tea plants. However, the specific metabolites involved and their regulatory mechanisms remain largely unknown. Here, we employed ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to conduct a comprehensive targeted metabolomic analysis of the trichomes and corresponding defoliated leaves from the buds of Fudingdahao (FDDH) white tea. Our analysis identified a total of 2,425 metabolites, with 1,537 differentially accumulated metabolites (DAMs) between the trichomes and leaves. Notably, flavonoids, particularly kaempferol and its derivatives, were found to be more abundant in trichomes. Transcriptomic analysis revealed 447 genes specifically highly expressed in trichomes, with significant enrichment in phenylpropanoid and flavonoid biosynthesis pathways. Further chromatin accessibility analysis identified an ERF transcription factor, CsRAP2.3, as a key regulator. DNA affinity purification sequencing and luciferase reporter assays demonstrated that CsRAP2.3 binds to the promoter of the CsUGT78A14 gene, which is involved in kaempferol glycosylation. Transient overexpression of CsRAP2.3 in tobacco leaves increased flavonol metabolites. Our results suggest that CsRAP2.3 may regulate the expression of CsUGT78A14, thereby influencing the accumulation of flavonols in trichomes of tea plants. This study provides insights into the molecular mechanisms underlying the accumulation of flavonol metabolites in white tea trichomes and offers a foundation for improving tea stress resistance and quality.

Keywords:  tea trichomes       flavonol biosynthesis       metabolomics       transcriptional regulation  
Online: 13 January 2026  
Fund: 

This work was supported by the Fujian Provincial Natural Science Foundation of China (KJB23011XA), the National Natural Science Foundation of China (32372769), the Fujian Provincial Major Science and Technology Special Project (2024NZ029030), the Fujian Provincial Regional Development Project (2023N3014), and Fujian Province Tea Industry Engineering Technology Research Center.

About author:  #Correspondence Peitao Lü, E-mail: lvpeitao@catasitbb.cn; Weijiang Sun, E-mail: 000q020007@fafu.edu.cn; Wen Zeng, E-mail: wenzeng_t@163.com *These authors contributed equally to this study.

Cite this article: 

Junmei Huang, Dafeng Dong, Tao Wang, Zhidan Chen, Peitao Lü, Weijiang Sun, Wen Zeng. 2026. The CsRAP2.3-CsUGT78A14 module regulates flavonol biosynthesis in white tea trichomes. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.013

Büttner M, Singh K B. 1997. Arabidopsis thaliana ethylene-responsive element binding protein (atebp), an ethylene-inducible, gcc box dna-binding protein interacts with an ocs element binding protein. Proceedings of the National Academy of Sciences of the United States of America, 94, 5961-5966.

Chen L, Tian N, Hu M, Sandhu D, Jin Q, Gu M, Zhang X, Peng Y, Zhang J, Chen Z, Liu G, Huang M, Huang J, Liu Z, Liu S. 2022. Comparative transcriptome analysis reveals key pathways and genes involved in trichome development in tea plant (Camellia sinensis). Frontiers in Plant Science, 13, 997778.

Chen M, Yan T, Shen Q, Lu X, Pan Q, Huang Y, Tang Y, Fu X, Liu M, Jiang W, Lv Z, Shi P, Ma Y N, Hao X, Zhang L, Li L, Tang K. 2017. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytologist, 214, 304-316.

Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Molecular Plant, 6, 1769-1780.

Cheng C, Liu F, Sun X, Wang B, Liu J, Ni X, Hu C, Deng G, Tong Z, Zhang Y, Lü P. 2022. Genome-wide identification of fad gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana. International Journal of Biological Macromolecules, 204, 661-676.

Cui L, Yao S, Dai X, Yin Q, Liu Y, Jiang X, Wu Y, Qian Y, Pang Y, Gao L, Xia T. 2016. Identification of udp-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis ). Journal of Experimental Botany, 67, 2285-2297.

Doroshkov A V, Konstantinov D K, Afonnikov D A, Gunbin K V. 2019. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. BMC Plant Biology, 19: 53.

Jiang X, Shi Y, Dai X, Zhuang J, Fu Z, Zhao X, Liu Y, Gao L, Xia T. 2018. Four flavonoid glycosyltransferases present in tea overexpressed in model plants Arabidopsis thaliana and Nicotiana tabacum for functional identification. Journal of Chromatography B, 1100-1101, 148-157.

Kang J, Mcroberts J, Shi F, Moreno J E, Jones A D, Howe G A. 2014. The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiology, 164, 1161-1174.

Kim D, Langmead B, Salzberg S L. 2015. Hisat: a fast spliced aligner with low memory requirements. Nature Methods, 12, 357-360.

Kim N Y, Jang Y J, Park O K. 2018. AP2/ERF family transcription factors ORA59 and RAP2.3 interact in the nucleus and function together in ethylene responses. Frontiers in Plant Science, 9,1675.

Klemm S L, Shipony Z, Greenleaf W J. 2019. Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 20, 207-220.

Li C, Su J, Zhao N, Lou L, Ou X, Yan Y, Wang L, Jiang J, Chen S, Chen F. 2023. CmERF5-CmRAP2.3 transcriptional cascade positively regulates waterlogging tolerance in Chrysanthemum morifolium. Plant Biotechnology Journal21, 270-282.

Li H, Chen Z, Zhu W, Ni X, Wang J, Fu L, Chen J, Li T, Tang L, Yang Y, Zhang F, Wang J, Zhou B, Chen F, Lü P. 2025. The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana. The Plant Cell, 37, koae282.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079.

Li H Y, Xiao S, Chye M L. 2008. Ethylene- and pathogen-inducible Arabidopsis acyl-coa-binding protein 4 interacts with an ethylene-responsive element binding protein. Journal of Experimental Botany, 59, 3997-4006.

Li P, Fu J, Xu Y, Shen Y, Zhang Y, Ye Z, Tong W, Zeng X, Yang J, Tang D, Li P, Zuo H, Wu Q, Xia E, Wang S, Zhao J. 2022. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytologist, 234, 902-917.

Li P, Xu Y, Zhang Y, Fu J, Yu S, Guo H, Chen Z, Chen C, Yang X, Wang S, Zhao J. 2020. Metabolite profiling and transcriptome analysis revealed the chemical contributions of tea trichomes to tea flavors and tea plant defenses. Journal of Agriculture and Food Chemistry, 68, 11389-11401.

Li W, Mao J, Yang S, Guo Z, Ma Z, Dawuda M M, Zuo C, Chu M, Chen B. 2018. Anthocyanin accumulation correlates with hormones in the fruit skin of 'red delicious' and its four generation bud sport mutants. BMC Plant Biology, 18, 363.

Liao Y, Smyth G K, Shi W. 2019. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research, 47, e47.

Liu X, Bartholomew E, Cai Y, Ren H. 2016. Trichome-related mutants provide a new perspective on multicellular trichome initiation and development in cucumber (Cucumis sativus L). Frontiers Plant Science, 7, 1187.

Liu X, Zhou F, Wen M, Jiang S, Long P, Ke J, Han Z, Zhu M, Zhou Y, Zhang L. 2024. LC-MS and GC-MS based metabolomics analysis revealed the impact of tea trichomes on the chemical and flavor characteristics of white tea. Food Research International, 191, 114740.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Lü P, Yu S, Zhu N, Chen Y, Zhou B, Pan Y, Tzeng D, Fabi J P, Argyris J, Garcia-Mas J, Ye N, Zhang J, Grierson D, Xiang J, Fei Z, Giovannoni J, Zhong S. 2018. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nature Plants, 4, 784-791.

Ogawa T, Pan L, Kawai-Yamada M, Yu L, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H. 2005. Functional analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to bax and abiotic stress-induced plant cell death. Plant Physiology, 138, 1436-1445.

O'Malley R C, Huang S C, Song L, Lewsey M G, Bartlett A, Nery J R, Galli M, Gallavotti A, Ecker J R. 2016. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell, 165, 1280-1292.

Qiao D, Lei W, Mi X, Yang C, Liang S, Li H, Guo Y, Chen J, Fan W, Yan J, Yang W, Zheng W, Jiang T, Yu Y, Chen Z, Wang P. 2025. Three-dimensional genomic structure and aroma formation in the tea cultivar 'Qiancha 1'. Horticulture Research, 12, uhaf064.

Rana A, Sharma E, Rawat K, Sharma R, Verma S, Padwad Y, Gulati A. 2016. Screening and purification of catechins from underutilized tea plant parts and their bioactivity studies. Journal of Food Science and Technology, 53, 4023-4032.

Schilmiller A L, Last R L, Pichersky E. 2008. Harnessing plant trichome biochemistry for the production of useful compounds. The Plant Journal, 54, 702-711.

Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal, 50, 660-677.

Tan H, Xiao L, Gao S, Li Q, Chen J, Xiao Y, Ji Q, Chen R, Chen W, Zhang L. 2015. TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Molecular Plant, 8, 1396-1411.

Tohge T, Wendenburg R, Ishihara H, Nakabayashi R, Watanabe M, Sulpice R, Hoefgen R, Takayama H, Saito K, Stitt M, Fernie A R. 2016. Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nature Communications, 7, 12399.

Wang F, Li H, Wu Z, Yan J, Feng H, Liu R, Wu Y, Liu Y, Lei W, Fan W, Liang T, Chen R, Zhang Y, Xiao Y, Lei X, Zhang B, Zheng Y, Wang P. 2025. Genomic and metabolomic insights into volatile and nonvolatile metabolite variation from fresh leaves to the turning stages in Wuyi Rock Tea 'Rougui'. Journal of Agriculture and Food Chemistry, 73, 25089-25102.

Wang P, Gu M, Yu X, Shao S, Du J, Wang Y, Wang F, Chen S, Liao Z, Ye N, Zhang X. 2022. Allele-specific expression and chromatin accessibility contribute to heterosis in tea plants (Camellia sinensis). The Plant Journal, 112, 1194-1211.

Wang P, Yu J, Jin S, Chen S, Yue C, Wang W, Gao S, Cao H, Zheng Y, Gu M, Chen X, Sun Y, Guo Y, Yang J, Zhang X, Ye N. 2021a. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research, 8, 107.

Wang X, Shen C, Meng P, Tan G, Lv L. 2021b. Analysis and review of trichomes in plants. BMC Plant Biology, 21, 70.

Watkins J M, Hechler P J, Muday G K. 2014. Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. Plant Physiology, 164, 1707-1717.

Yan A, Pan J, An L, Gan Y, Feng H. 2012. The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology,113, 29-35.

Yang C, Ye Z. 2013. Trichomes as models for studying plant cell differentiation. Cellular and Molecular Life Sciences, 70, 1937-1948.

Yang C S, Hong J. 2013. Prevention of chronic diseases by tea, possible mechanisms and human relevance. Annual Review of Nutrition, 33, 161-181.

Yu G, Wang L, Han Y, He Q. 2012. Clusterprofiler, an R package for comparing biological themes among gene clusters. Omics, A Journal of Integrative Biology, 16, 284-287.

Yu Z, Zheng X, Lin W, He W, Shao L, Peng C. 2021. Photoprotection of arabidopsis leaves under short-term high light treatment, the antioxidant capacity is more important than the anthocyanin shielding effect. Plant Physiology and Biochemistry, 166, 258-269.

Zhang X, Chen S, Shi L, Gong D, Zhang S, Zhao Q, Zhan D, Vasseur L, Wang Y, Yu J, Liao Z, Xu X, Qi R, Wang W, Ma Y, Wang P, Ye N, Ma D, Shi Y, Wang H, Ma X, Kong X, Lin J, Wei L, Ma Y, Li R, Hu G, He H, Zhang L, Ming R, Wang G, Tang H, You M. 2021 .Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics, 53:1250-1259.

Zhang Y, Liu T, Meyer C A, Eeckhoute J, Johnson D S, Bernstein B E, Nusbaum C, Myers R M, Brown M, Li W, Liu X S. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9, R137.

Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics, chemical diversity metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology, 40, 667-688.

Zhao M, Jin J, Gao T, Zhang N, Jing T, Wang J, Ban Q, Schwab W, Song C. 2019. Glucosyltransferase CsUGT78a14 regulates flavonols accumulation and reactive oxygen species scavenging in response to cold stress in Camellia sinensis. Frontiers in Plant Science, 10, 1675.

Zhao M, Li J, Zhu L, Chang P, Li L, Zhang L. 2019. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes-Basel, 10, 496.

Zhao X, Wang P, Li M, Wang Y, Jiang X, Cui L, Qian Y, Zhuang J, Gao L, Xia T. 2017. Functional characterization of a new tea (Camellia sinensis) flavonoid glycosyltransferase. Journal of Agriculture and Food Chemistry, 65, 2074-2083.

Zhao X, Zeng X, Lin N, Yu S, Fernie A.R, Zhao J. 2021. CsbZIP1-CsMYB12 mediates the production of bitter-tasting flavonols in tea plants (Camellia sinensis) through a coordinated activator-repressor network. Horticulture Research, 8, 110.

Zhu W, Li H, Dong P, Ni X, Fan M, Yang Y, Xu S, Xu Y, Qian Y, Chen Z, Lü P. 2023. Low temperature-induced regulatory network rewiring via WRKY regulators during banana peel browning. Plant Physiology, 193, 855-873.

[1] Lixia Sheng, Yuqi Zhang, Xiaoke Yang, Yujia Yin, Jianqiang Yu. Functional differences between two homologous MYB transcription factors in regulating fruit color in octoploid strawberry (Fragaria×ananassa)[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3484-3493.
[2] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
[3] Shuran Li, Chunqing Ou, Fei Wang, Yanjie Zhang, Omayma Ismail, Yasser S. G. Abd Elaziz, Sherif Edris, , He Li, Shuling Jiang. Ppbbx24-del mutant positively regulates light-induced anthocyanin accumulation in the ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group)[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2619-2639.
[4] Zhizhou Xu, Guichun Wu, Bo Wang, Baodian Guo, Cong Sheng, Yangyang Zhao, Bao Tang, Yancun Zhao, Fengquan Liu. Sigma factor 70 RpoD contributes to virulence by regulating cell motility, oxidative stress tolerance, and manipulating the expression of hrpG and hrpX in Xanthomonas oryzae pv. oryzae[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1844-1859.
[5] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[6] Jiage Li, Rongling Qin, Yongchen Fang, Yuhao Gao, Yang Jiao, Jia Wei, Songling Bai, Junbei Ni, Yuanwen Teng. PpMYB114 partially depends on PpMYB10 for the promotion of anthocyanin accumulation in pear[J]. >Journal of Integrative Agriculture, 2025, 24(12): 4630-4642.
[7] Yajun Zhang, Xiao Chang, Bing Wang, Dawei Wei, Rongzhen Zhong, Yansheng Guo, Min Du, Guijie Zhang. Supplementation of Lycium barbarum residue increases the growth rate of Tan sheep by enhancing their feed intake and regulating their rumen microbiome and metabolome[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3129-3144.
[8] Yang Cao, Peihua Du, Yuwei Shang, Jiahao Ji, Leiqing Tan, Xue Zhang, Jizhong Xu, Bowen Liang. Melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2270-2291.
[9] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[10] ZHANG Ting, ZHANG Yong-xia, SUN Yu-ming, XU Xiao-yang, WANG Yin-jie, CHONG Xin-ran, YANG Yong-heng and YUAN Hai-yan.

Isolation and functional analysis of SrMYB1, a direct transcriptional repressor of SrUGT76G1 in Stevia rebaudiana [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1058-1067.

[11] GAO Ting, HOU Bing-hao, SHAO Shu-xian, XU Meng-ting, ZHENG Yu-cheng, JIN Shan, WANG Peng-jie, YE Nai-xing. Differential metabolites and their transcriptional regulation in seven major tea cultivars (Camellia sinensis) in China[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3346-3363.
[12] REN Chuan-ying, LU Shu-wen, GUAN Li-jun, HONG Bin, ZHANG Ying-lei, HUANG Wen-gong, LI Bo, LIU Wei, LU Wei-hong.

The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2767-2776.

[13] SUN Yu-hang, ZHAI Gui-ying, PANG Yong-jia, LI Rui, LI Yu-mao, CAO Zhi-ping, WANG Ning, LI Hui, WANG Yu-xiang. PPAR gamma2: The main isoform of PPARγ that positively regulates the expression of the chicken Plin1 gene[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2357-2371.
[14] HUI Jing, LIU Zhi, DUAN Feng-ying, ZHAO Yang, LI Xue-lian, AN Xia, WU Xiang-yu, YUAN Li-xing. Ammonium-dependent regulation of ammonium transporter ZmAMT1s expression conferred by glutamine levels in roots of maize[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2413-2421.
[15] ZHAO Zhi-hao, SHI Ai-min, GUO Rui, LIU Hong-zhi, HU Hui, WANG Qiang. Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 878-891.
No Suggested Reading articles found!