Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Optimizing row configuration and maize planting density enhances yield and economic benefits in maize and soybean strip intercropping

Jinchuan Zhang1, 2*, Xin Qian3, Yuting Wei1, 2, Tianzi Wang1, 2, Xuelong Fu1, 2, Sijie Luo1, 2, Yuanquan Chen1, 2, Leanne Peixoto4, Zhaohai Zeng1, 2, Huadong Zang1, 2#

1 State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

2 Key Laboratory of Farming system, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing 100193, China

3 State Key Laboratory of Nutrient Use and Management/National Engineering Laboratory for Wheat and Maize, Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China

4 Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark

 Highlights 

l Optimizing field configuration increased land equivalent ratio by 6-15%.

l Optimizing maize planting density simultaneously enhanced maize and soybean yields.

l M3S4 improved maize yield by 12% but reduced soybean yield by 17% compared to M2S4.

l The M3S4/D90 configuration performed best in crop productivity and economic benefit.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米大豆带状复合种植能够提高土地利用率,对保障粮食安全具有重要作用。然而,该种植模式的最优田间配置参数尚不明确,尤其是在已广泛推广应用的华北平原地区。本研究通过两年田间试验,评估了两种行比配置下四种玉米种植密度对土地当量比、作物产量及经济效益的影响。结果表明,所有田间配置下,复合种植均能提高土地利用率,平均土地当量比为1.20。在M3S4(3行玉米与4行大豆交替种植)配置下,采用单作玉米密度的90%种植时,玉米产量最高可达单作的93.3%,同时额外产出大豆893 kg ha-1。与M2S4(2行玉米与4行大豆交替种植)相比,M3S4使玉米产量提高了12.2%,但导致大豆产量降低17.1%。此外,优化玉米种植密度可提高土地利用率、作物产量及净收益。相较M3S4配置下100%单作玉米种植密度,90%单作玉米种植密度最优,使土地当量比提高了6.7%,玉米产量提高了5.6%,大豆产量提高了8.1%,净收益提高了8%。这些结果表明,优化田间配置能显著提高玉米大豆带状复合种植的作物产量及经济效益。本研究强调了优化田间配置提升玉米大豆带状复合种植的产量潜力和经济可行性,为该模式大规模推广提供了科学依据。



Abstract  

Maize and soybean intercropping improve land use efficiency and plays a crucial role in ensuring food security. However, optimal field configuration parameters for maize and soybean strip intercropping remain unclear, particularly in the North China Plain where the system has been widely adopted. A two-year field experiment was conducted to evaluate the effects of four maize planting densities under two row configurations on the land equivalent ratio (LER), crop yields, and economic benefits. Our results demonstrated that intercropping consistently enhanced land use efficiency across all field configurations, with an average LER of 1.20. Under the M3S4 (three maize rows alternating with four soybean rows) configuration at 90% of the monocropping maize density, maize yields were sustained at up to 93.3% of monocrop, while simultaneously producing an additional 893 kg ha-1 soybean. Compared to the M2S4 configuration (two maize rows alternating with four soybean rows), the M3S4 increased maize yield by 12.2%, but led to a 17.1% reduction in soybean yield. Further, optimization of maize planting density improved land use efficiency, crop yields, and the net income. The optimal M3S4 configuration at 90% of the monocropping maize density increased the LER by 6.7%, maize yield by 5.6%, soybean yield by 8.1%, and net income by 8% compared to M3S4 at 100% density. These findings indicate that optimizing field configurations can significantly improve crop yields and farmers' economic benefits in maize-soybean strip intercropping. Our study highlights that optimized field configurations improve both yield potential and economic viability of mechanized maize and soybean strip intercropping, providing a scientific basis for its large-scale adoption.

Keywords:  maize-soybean intercropping       row configuration       planting density       net income       yield component  
Online: 22 December 2025  
Fund: 

This study was financially supported by the National Key Research & Development Program of China (2022YFD2300901 and 2022YFD2300902-3), the Beijing Natural Science Foundation, China (6252011), the Shandong Modern Agricultural Industrial Technology System, China (SDAIT-31-01) and the State Key Laboratory of Maize Bio-breeding, China (SKLMB2443).

About author:  #Correspondence, Huadong Zang, E-mail: zanghuadong@cau.edu.cn

Cite this article: 

Jinchuan Zhang, Xin Qian, Yuting Wei, Tianzi Wang, Xuelong Fu, Sijie Luo, Yuanquan Chen, Leanne Peixoto, Zhaohai Zeng, Huadong Zang. 2025. Optimizing row configuration and maize planting density enhances yield and economic benefits in maize and soybean strip intercropping. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.038

Chai Q, Nemecek T, Liang C, Zhao C, Yu A, Coulter A, Wang Y, Hu F, Wang L, Siddique M, Gan Y. 2021. Integrated farming with intercropping increases food production while reducing environmental footprint. Proceedings of the National Academy of Sciences of the United States of America, 118, e2106382118.

FAO-UNESCO. 1988. Soil Map of the World, Revised Legend. World Soil Resources Report No. 60. Food and Agriculture Organization of the United Nations, Rome.

Feng L, Raza A, Shi J, Ansar M, Titriku K, Meraj A, Shah A, Ahmed Z, Saleem A, Liu W, Wang X, Yong T, Yuan S, Feng Y, Yang W. 2020. Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercropping system. European Journal of Agronomy, 118, 126092.

Feng W, Ge, J, Rodríguez, S, Zhao, B, Wang X, Peixoto, L, Yang Y, Zeng Z, Zang H. 2024. Oat/soybean strip intercropping benefits crop yield and stability in semi-arid regions: A multi-site and multi-year assessment. Field Crops Research, 318, 109560.

Homulle Z, George T, Karley A. 2022. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant and Soil, 471, 1-26.

JARB (Jinan Agriculture and Rural Bureau). 2023. Subsidized maize-soybean strip intercropping. [2023-3-30].  http://jnny.jinan.gov.cn/art/2023/3/30/art_115006_4780871.html

Li C, Hoffland E, Kuyper W, Yu Y, Li H, Zhang C, Zhang F, Van Der Werf W. 2020. Yield gain, complementarity and competitive dominance in intercropping in China: A meta-analysis of drivers of yield gain using additive partitioning. European Journal of Agronomy, 113, 125987.

Li X, Wang Z, Bao X, Sun J, Yang S, Wang P, Wang C, Wu J, Liu X, Tian X, Wang Y, Li J, Wang Y, Xia H, Mei P, Wang X, Zhao J, Yu R, Zhang W, Li L. 2021. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 4, 943–950.

Liu C, Feng X, Xu Y, Kumar A, Yan Z, Zhou J, Yang Y, Peixoto L, Zeng Z, Zang H. 2023. Legume-based rotation enhances subsequent wheat yield and maintains soil carbon storage. Agronomy for Sustainable Development, 43, 64.

Liu X, Rahman T, Song C, Yang F, Su B, Cui L, Bu W, Yang W. 2018. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 224, 91–101.

Liu Z, Ying, H, Chen M, Bai J, Xue Y, Yin Y, Batchelor W D, Bai Z, Du M, Guo Y, Zhang Q, Cui Z, Zhang F, Dou Z. 2021. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nature Food, 2, 426-433.

MARA (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). 2022. Guide for maize/soybean intercropping, People’s Republic of China. [2022-5-8]. http://www.moa.gov.cn/gk/nszd_1/2022/202201/t20220126_6387740.htm

Meng B, Yang Q, Mehrabi Z, Wang S. 2024. Larger nations benefit more than smaller nations from the stabilizing effects of crop diversity. Nature Food, 5, 491–498.

Qian X, Zang H, Xu H, Hu Y, Ren C, Guo L, Wang C, Zeng Z. 2018. Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: Yield advantages and economic benefits. Field Crops Research, 223, 33–40.

Qiang B, Fan, Z, Tang N, Asad S, Timbang C, Ren X, Chen X. 2024. Improving the productivity of intercropping through above and below ground separation: A case study on photosynthetic characteristics and root distribution. Industrial Crops & Products, 222, 119506.

Raza A, Gul H, Wang J, Yasin S, Qin R, Bin Khalid H, Naeem M, Feng Y, Iqbal N, Gitari H, Ahmad S, Battaglia M, Ansar M, Yang F, Yang W. 2021. Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. Journal of Cleaner Production, 308, 127282.

Ren Y, Liu J, Wang Z, Zhang S. 2016. Planting density and sowing proportions of maize–soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China. European Journal of Agronomy, 72, 70-79.

Tan Y, Hu F, Chai Q, Li G, Coulter A, Zhao C, Yu A, Fan Z, Yin W. 2020. Expanding row ratio with lowered nitrogen fertilization improves system productivity of maize/pea strip intercropping. European Journal of Agronomy, 113, 125986.

Tang Y, Qiu Y, Li X, Qin H, Wang J, Zhang S, Han Y, Feng L, Wang G, Yang B, Lei Y, Xiong S, Zhi X, Du W, Xin M, Li Y, Li X. 2024. Increased overyielding probability and yield stability from a 5-year cotton-based intercropping. European Journal of Agronomy, 156, 127145.

Wang C, Wang X, Sang Y, Müller C, Huang Y, Li L, Cooke D, Zhao Q, Zhang L, Lu Y, Zhou F, Liu H, Tao F, Lin T, Piao S. 2025. Oscillation-induced yield loss in China partially driven by migratory pests from mainland Southeast Asia. Nature Food, 6, 681–691.

Wang Q, Sun Z, Bai W, Zhang D, Zhang Y, Wang R, Van Der Werf W, Evers B, Stomph T, Guo J, Zhang L. 2021. Light interception and use efficiency differ with maize plant density in maize-peanut intercropping. Frontiers of Agricultural Science and Engineering, 3, 432-446.

Wang R, Sun Z, Zhang L, Yang N, Feng L, Bai W, Zhang D, Wang Q, Evers J B, Liu Y, Ren J, Zhang Y, Van Der Werf W. 2020. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Research, 253, 107819.

Wu Y, Gong W, Yang F, Wang X, Yong T, Yang W. 2016. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping. Plant Production Science, 19, 206–214.

Wu Y, Wang E, Gong W, Xu L, Zhao Z, He D, Yang F, Wang X, Yong T, Liu J, Pu T, Yan Y, Yang W. 2023. Soybean yield variations and the potential of intercropping to increase production in China. Field Crops Research, 291, 108771.

Xu J, Ren C, Zhang X, Wang S, Ma B, He Y, Hu L, Liu X, Zhang F, Lu L, Li S, Zhang J, Zhu Y, Vitousek P, Gu B. 2025. Soil health contributes to variations in crop production and nitrogen use efficiency. Nature Food, 2662-1355.

Xu Z, Li C, Zhang C, Yu Y, Van Der Werf W, Zhang F. 2020. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Research, 246, 107661.

Yan Y, Duan F, Li X, Zhao R, Hou P, Zhao M, Li S, Wang Y, Dai T, Zhou W. 2024. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 195, 2652–2667.

Yang H, Chai Q, Yin W, Hu F, Qin A, Fan Z, Yu A, Zhao C, Fan H. 2022. Yield photosynthesis and leaf anatomy of maize in inter- and mono-cropping systems at varying plant densities. The Crop Journal, 10, 893–903.

Yang S, Li H, Xu Y, Wang T, Hu Y, Zhao Y, Qian X, Li Z, Sui P, Gao W, Chen Y. 2024a. The yield performance of maize-soybean intercropping in the North China Plain: From 172 sites empirical investigation. Field Crops Research, 315, 109467.

Yang S, Zhao Y, Xu Y, Cui J, Li T, Hu Y, Qian X, Li Z, Sui P, Chen Y. 2024b. Yield performance response to field configuration of maize and soybean intercropping in China: A meta-analysis. Field Crops Research, 306, 109235.

Yu R, Yang H, Xing Y, Zhang W, Lambers H, Li L. 2022. Belowground processes and sustainability in agroecosystems with intercropping. Plant and Soil, 476, 263-288.

Zang H, Qian X, Wen Y, Hu Y, Ren C, Zeng Z, Guo L, Wang C. 2018. Contrasting carbon and nitrogen rhizodeposition patterns of soya bean (Glycine max L.) and oat (Avena nuda L.). European Journal of Soil Science, 69, 625–633.

Zhang D, Sun Z, Feng L, Bai W, Yang N, Zhang Z, Du G, Feng C, Cai Q, Wang Q, Zhang Y, Wang R, Arshad A, Hao X, Sun M, Gao Z, Zhang L. 2020. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Research, 257, 107926.

Zhang J, Qian X, Liu Q, Xu Y, Yang S, Meng S, Chen Y, Yang Y, Peixoto L, Zeng Z, Olesen J E, Zang H. 2025b. Direct measurements unveil overestimations in nitrous oxide emissions from legume-based strip intercropping. European Journal of Agronomy, 168, 127619.

Zhang J, Yao W, Wen Y, Qian X, Peixoto L, Yang S, Meng S, Yang Y, Zeng Z, Zang H. 2025a. Temporal and spatial patterns of N2O emissions in maize/legume strip intercropping: Effects of straw incorporation and crop interactions. Field Crops Research, 326, 109850.

Zhang W, Li Z, Gao S, Yang H, Xu H, Yang X, Fan H, Su Y, Surigaoge, Weiner J, Fornara D, Li L. 2023. Resistance vs. surrender: Different responses of functional traits of soybean and peanut to intercropping with maize. Field Crops Research, 291, 108779.

Zhang Y, Sun Z, Su Z, Du G, Bai W, Wang Q, Wang R, Nie J, Sun T, Feng C, Zhang Z, Yang N, Zhang X, Evers B, Van Der Werf W, Zhang L. 2022. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crops Research, 282, 108523. 

[1] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[2] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[3] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[4] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

[5] GUAN Xian-jiao, CHEN Jin, CHEN Xian-mao, XIE Jiang, DENG Guo-qiang, HU Li-zhen, LI Yao, QIAN Yin-fei, QIU Cai-fei, PENG Chun-rui. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1278-1289.
[6] Christian Adler PHARES, Selorm AKABA. Co-application of compost or inorganic NPK fertilizer with biochar influenced soil quality, grain yield and net income of rice[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3600-3610.
[7] ZHANG Xu-huan, LIU Hao, MA Xu-hui, ZHOU Gu-yi, RUAN Hong-qiang, CUI Hong-wei, PANG Jun-ling, SIFFAT Ullah Khan, ZONG Na, WANG Ren-zhong, LENG Peng-fei, ZHAO Jun. Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response to high planting density[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3514-3523.
[8] ZHANG Min, XING Li-juan, REN Xiao-tian, ZOU Jun-jie, SONG Fu-peng, WANG Lei, XU Miao-yun. Evidence of silk growth hampering in maize at high planting density using phenotypic and transcriptional analysis[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3148-3157.
[9] XIE Jun, Blagodatskaya EVGENIA, ZHANG Yu, WAN Yu, HU Qi-juan, ZHANG Cheng-ming, WANG Jie, ZHANG Yue-qiang, SHI Xiao-jun. Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improved rice grain yield, nutrient use efficiency and soil carbon sequestration[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3345-3355.
[10] CHEN Yuan, LIU Zhen-yu, HENG Li, Leila I. M. TAMBEL, ZHANG Xiang, CHEN Yuan, CHEN De-hua. Effects of plant density and mepiquat chloride application on cotton boll setting in wheat–cotton double cropping system[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2372-2381.
[11] FU You-qiang, ZHONG Xu-hua, ZENG Jia-huan, LIANG Kai-ming, PAN Jun-feng, XIN Ying-feng, LIU Yan-zhuo, HU Xiang-yu, PENG Bi-lin, CHEN Rong-bing, HU Rui, HUANG Nong-rong. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China[J]. >Journal of Integrative Agriculture, 2021, 20(2): 565-580.
[12] LIU Yue-e, HOU Peng, HUANG Gui-rong, ZHONG Xiu-li, LI Hao-ru, ZHAO Jiu-ran, LI Shao-kun, MEI Xu-rong. Maize grain yield and water use efficiency in relation to climatic factors and plant population in northern China[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3156-3169.
[13] MENG Lu, ZHANG Li-zhen, QI Hai-kun, DU Ming-wei, ZUO Yan-li, ZHANG Ming-cai, TIAN Xiao-li, LI Zhao-hu. Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2892-2899.
[14] LI Guang-hao, CHENG Qian, LI Long, LU Da-lei, LU Wei-ping. N, P and K use efficiency and maize yield responses to fertilization modes and densities[J]. >Journal of Integrative Agriculture, 2021, 20(1): 78-86.
[15] LIU Xin, WANG Wen-xin, LIN Xiang, GU Shu-bo, WANG Dong. The effects of intraspecific competition and light transmission within the canopy on wheat yield in a wide-precision planting pattern[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1577-1585.
No Suggested Reading articles found!