Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genome-wide association mapping revealed a major QTL for Septoria tritici blotch resistance in wheat

Xiaoqian Wang1, Chenchen Zhao2, Qinglan Wei1, Chengdao Li3, 4, Zhong-Hua Chen5, Rajeev Varshney3, Sergey Shabala6, Meiqin Lu7, Yunlong Pang1#, Meixue Zhou2#

1 National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

2 Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS 7250, Australia

3 Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA 6150 Australia

4 Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA 6150 Australia

5 School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia

6 School of Biological Science, University of Western Australia, Crawley 6009, Australia

7 Australian Grain Technologies, Narrabri, NSW 2390, Australia

 Highlights 

GWAS of 318 diverse wheat accessions identified 14 QTLs for Septoria tritici blotch resistance.

Three stable QTLs (qSTB-3B.1, qSTB-4A.2, and qSTB-6B) were consistently detected across environments.

The qSTB-4A.2 allele reduced disease scores from 5.4 to 3.9, and it acted additively with qSTB-6B for enhanced resistance.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

摘要:由真菌病原体小麦壳针孢(Zymoseptoria tritici)引起的小麦壳针孢叶枯病(STB)对全球小麦生产构成严重威胁,显著影响产量和籽粒品质。为解析STB抗性遗传位点,本研究利用13,098个高质量SNP318份多样化小麦种质(包括澳大利亚商业品种、澳大利亚谷物基因库资源、中国商业品种和中国地方品种)进行全基因组关联分析。通过连续两年的田间抗性评价,结合群体结构和主成分分析,发现中国地方品种与其他群体存在明显遗传分化,且中国地方品种中抗病种质比例最高。共鉴定到14个与STB抗性相关的数量性状位点(QTL),其中qSTB-3B.1qSTB-4A.2qSTB-6B在全部环境中稳定表达,qSTB-4A.2被确定为主效抗病位点。选择qSTB-4A.2等位基因可使平均病情评分从5.4降低至3.9。进一步研究发现,同时携带qSTB-4A.2qSTB-6B抗性等位基因的种质,其病情评分显著低于仅携带qSTB-4A.2的种质,表明存在加性效应。在稳定QTL区间内通过候选基因分析鉴定出27个潜在抗病基因,包括已知抗病相关基因同源物(如Lr34/Yr18/Pm38OsWAK1)。本研究深化了对STB抗性遗传机制的理解,为培育持久抗病小麦品种提供了可靠的分子标记和候选基因资源。



Abstract  

Septoria tritici blotch (STB), caused by the fungal pathogen Zymoseptoria tritici, poses a major threat to global wheat production, adversely affecting both yield and grain quality. To identify the genetic loci controlling STB resistance, a genome-wide association study (GWAS) was conducted using 13,098 high-quality SNPs across a diverse panel of 318 wheat accessions including Australian commercial varieties, Australian Grains Genebank, Chinese commercial varieties, and Chinese landraces. Disease resistance was evaluated over two consecutive years under field conditions. Population structure and principal component analyses revealed distinct genetic differentiation between Chinese landraces and other groups. Notably, Chinese landraces exhibited the highest proportion of resistant accessions. We identified a total of 14 quantitative trait loci (QTLs) associated with STB resistance. Notably, three QTLs (qSTB-3B.1, qSTB-4A.2, and qSTB-6B) were consistently detected across all environments, with qSTB-4A.2 as a major resistance locus. Selection for the qSTB-4A.2 allele reduced the average disease score from 5.4 to 3.9. Furthermore, an additive effect was observed, where accessions carrying resistance alleles at both qSTB-4A.2 and qSTB-6B exhibited significantly lower disease scores than those with only the qSTB-4A.2 allele. Candidate gene analysis within these stable QTLs identified 27 promising genes including homologs of known disease resistance-related genes such as Lr34/Yr18/Pm38, and OsWAK1. These findings enhance our understanding of STB resistance genetics and provide robust markers and candidate genes for marker-assisted selection in breeding durable and disease-resistant wheat cultivars.


Keywords:  wheat       septoria tritici blotch       GWAS       QTLs       candidate genes  
Online: 08 December 2025  
Fund: 

This work was supported by the Shandong Provincial Natural Science Foundation, China (ZR2024YQ069 and ZR2024QC053), the Grains Research and Development Corporation (GRDC), the Taishan Scholars Program, and the Open Project Program (WIKF202401) of State Key Laboratory of Wheat Improvement.

Cite this article: 

Xiaoqian Wang, Chenchen Zhao, Qinglan Wei, Chengdao Li, Zhong-Hua Chen, Rajeev Varshney, Sergey Shabala, Meiqin Lu, Yunlong Pang, Meixue Zhou. 2025. Genome-wide association mapping revealed a major QTL for Septoria tritici blotch resistance in wheat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.013

Adhikari L, Raupp J, Wu S, Koo D H, Friebe B, Poland J. 2023. Genomic characterization and gene bank curation of Aegilops: the wild relatives of wheat. Frontiers in Plant Science, 14, 1268370.

Adhikari L, Raupp J, Wu S, Wilson D, Evers B, Koo D H, Singh N, Friebe B, Poland J. 2022. Genetic characterization and curation of diploid A-genome wheat species. Plant Physiology, 188, 2101-2114.

Adhikari T B, Anderson J M, Goodwin S B. 2003. Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology, 93, 1158-1164.

Adhikari T B, Yang X, Cavaletto J R, Hu X, Buechley G, Ohm H W, Shaner G, Goodwin S B. 2004. Molecular mapping of Stb1, a potentially durable gene for resistance to septoria tritici blotch in wheat. Theoretical and Applied Genetics, 109, 944-953.

Alemu A, Brazauskas G, Gaikpa D S, Henriksson T, Islamov B, Jørgensen L N, Koppel M, Koppel R, Liatukas Ž, Svensson J T, Chawade A. 2021. Genome-wide association analysis and genomic prediction for adult-plant resistance to septoria tritici blotch and powdery mildew in winter wheat. Frontiers in Genetics, 12, 661742.

Arraiano L S, Brown J K M. 2006. Identification of isolate-specific and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathology, 55, 726-738.

Balfourier F, Bouchet S, Robert S, De Oliveira R, Rimbert H, Kitt J, Choulet F, Consortium I W G S, Consortium B, Paux E. 2019. Worldwide phylogeography and history of wheat genetic diversity. Science advances, 5, eaav0536.

Binalf L, Shifa H, Tadesse W. 2024. Association mapping of septoria tritici blotch resistance in bread wheat in Bale and Arsi highlands, Ethiopia. Heliyon, 10, e32265.

Brading P A, Verstappen E C P, Kema G H J, Brown J K M. 2002. A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the septoria tritici blotch pathogen. Phytopathology, 92, 439-445.

Brown J K, Chartrain L, Lasserre-Zuber P, Saintenac C. 2015. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genetics and Biology, 79, 33-41.

Castro A C, Simón M R. 2017. The impact of Septoria tritici blotch in bread making quality among argentinean wheat cultivars. Journal of Cereal Science, 77, 259-265.

Chen H, Wang Q, Fan M, Zhang X, Feng P, Zhu L, Wu J, Cheng X, Wang J. 2023. A single nucleotide variation of CRS2 affected the establishment of photosynthetic system in rice. International Journal of Molecular Sciences, 24, 5796.

Collins B, Chenu K. 2021. Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate. Climate Risk Management, 32, 100300.

Cowling S G, Br lé-Babel A L, Somers D, Lamari L. 2004. Identification and mapping of host resistance genes to Septoria tritici blotch of wheat. Phytopathology, 94, 22.

Dean R, Van Kan J a L, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414-430.

Feldman M. 2001. Origin of cultivated wheat. In: Bonjean A P, Angus W J, eds. The World Wheat Book: A History of Wheat Breeding. London: Intercept Ltd, 3-56.

Feurtey A, Lorrain C, Mcdonald M C, Milgate A, Solomon P S, Warren R, Puccetti G, Scalliet G, Torriani S F F, Gout L, Marcel T C, Suffert F, Alassimone J, Lipzen A, Yoshinaga Y, Daum C, Barry K, Grigoriev I V, Goodwin S B, Genissel A, et al. 2023. A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Nature Communications, 14, 1059.

Gao X, Li F, Sun Y, Jiang J, Tian X, Li Q, Duan K, Lin J, Liu H, Wang Q. 2024. Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight. Journal of Integrative Agriculture, 23, 1238-1258.

Hafeez A N, Chartrain L, Feng C, Cambon F, Clarke M, Griffiths S, Hayta S, Jiang M, Keller B, Kirby R, Kolodziej M C, Powell O R, Smedley M, Steuernagel B, Xian W, Wingen L U, Cheng S, Saintenac C, Wulff B B H, Brown J K M. 2023. Septoria tritici blotch resistance gene Stb15 encodes a lectin receptor-like kinase. Nature Plants, 11, 410-420.

Hu W, Fu L, Gao D, Li D, Liao S, Lu C. 2023. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in the high-quality soft wheat cultivar Yangmai 15. Journal of Integrative Agriculture, 22, 360-370.

International Wheat Genome Sequencing Consortium. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788.

Jiao C, Xie X, Hao C, Chen L, Xie Y, Garg V, Zhao L, Wang Z, Zhang Y, Li T, Fu J, Chitikineni A, Hou J, Liu H, Dwivedi G, Liu X, Jia J, Mao L, Wang X, Appels R, et al. 2025. Pan-genome bridges wheat structural variations with habitat and breeding. Nature, 637, 384-393.

Lagudah E, Mcfadden H, Singh R, Huerta-Espino J, Bariana H, Spielmeyer W. 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 114, 21-30.

Laidig F, Feike T, Hadasch S, Rentel D, Klocke B, Miedaner T, Piepho H P. 2021. Breeding progress of disease resistance and impact of disease severity under natural infections in winter wheat variety trials. Theoretical and Applied Genetics, 134, 1281-1302.

Langlands-Perry C, Cuenin M, Bergez C, Krima S B, Gélisse S, Sourdille P, Valade R, Marcel T C. 2021. Resistance of the wheat cultivar ‘Renan’to Septoria leaf blotch explained by a combination of strain specific and strain non-specific QTL mapped on an ultra-dense genetic map. Genes, 13, 100.

Li H, Zhou S, Zhao W, Su S, Peng Y. 2009. A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Molecular Biology, 69, 337-346.

Liu Y, Fu B, Zhang Q, Cai J, Guo W, Zhai W, Wu J. 2024. Genetic diversity and population structure of wheat landraces in Southern Winter Wheat Region of China. Bmc Genomics, 25, 664.

Louriki S, Rehman S, El Hanafi S, Bouhouch Y, Al-Jaboobi M, Amri A, Douira A, Tadesse W. 2021. Identification of resistance sources and genome-wide association mapping of Septoria tritici blotch resistance in spring bread wheat germplasm of ICARDA. Frontiers in Plant Science, 12, 600176.

Odilbekov F, Armoniené R, Koc A, Svensson J, Chawade A. 2019. GWAS-assisted genomic prediction to predict resistance to Septoria tritici blotch in Nordic winter wheat at seedling stage. Frontiers in Genetics, 10, 1224.

Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.

Patial M, Navathe S, He X, Kamble U, Kumar M, Joshi A K, Singh P K. 2024. Novel resistance loci for quantitative resistance to Septoria tritici blotch in Asian wheat (Triticum aestivum) via genome-wide association study. BMC Plant Biology, 24, 846.

Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.

Rudd J J, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai N M, Powers S J. 2015. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiology, 167, 1158-1185.

Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary S M T, Poucet T, Marande W, Berges H, Xu S, Jaouannet M, Favery B, Alassimone J, Sánchez-Vallet A, Faris J, Kema G, Robert O, Langin T. 2021. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nature Communications, 12, 433.

Singh A, Singh U, Mittal D, Grover A. 2010. Transcript expression and regulatory characteristics of a rice glycosyltransferase OsGT61-1 gene. Plant Science, 179, 114-122.

Thauvin J N, Gélisse S, Cambon F, Langin T, The Breedwheat Consortium, Marcel T C, Saintenac C. 2024. The genetic architecture of resistance to septoria tritici blotch in French wheat cultivars. BMC Plant Biology, 24, 1212.

Thomas M R, Cook R J, King J E. 1989. Factors affecting development of Septoria tritici in winter wheat and its effect on yield. Plant Pathology, 38, 246-257.

Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L. 2014. Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12, 787-796.

Watson J, Zheng B, Chapman S, Chenu K. 2017. Projected impact of future climate on water-stress patterns across the Australian wheatbelt. Journal of Experimental Botany, 68, 5907-5921.

Wei C.2011. Overlapping codon model, phylogenetic clustering, and alternative partial expectation conditional maximization algorithm. Ames: Iowa State University.

Winfield M O, Allen A M, Wilkinson P A, Burridge A J, Barker G L, Coghill J, Waterfall C, Wingen L U, Griffiths S, Edwards K J. 2018. High‐density genotyping of the AE Watkins Collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnology Journal, 16, 165-175.

Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang C R, Chen S, Xu C, Tang X. 2024. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. Rice, 17, 54.

Yang N, Mcdonald M C, Solomon P S, Milgate A W. 2018. Genetic mapping of Stb19, a new resistance gene to Zymoseptoria tritici in wheat. Theoretical and Applied Genetics, 131, 2765-2773.

Yang N, Ovenden B, Baxter B, Mcdonald M C, Solomon P S, Milgate A. 2022. Multi-stage resistance to Zymoseptoria tritici revealed by GWAS in an Australian bread wheat diversity panel. Frontiers in Plant Science, 13, 990915.

Zhao H, Frank T, Tan Y, Zhou C, Jabnoune M, Arpat A B, Cui H, Huang J, He Z, Poirier Y. 2016. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytologist, 211, 926-939.

Zhong Z, Marcel T C, Hartmann F E, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N. 2017. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytologist, 214, 619-631.

Zhou Y, Zhao X, Li Y, Xu J, Bi A, Kang L, Xu D, Chen H, Wang Y, Wang Y, Liu S, Jiao C, Lu H, Wang J, Yin C, Jiao Y, Lu F. 2020. Triticum population sequencing provides insights into wheat adaptation. Nature Genetics, 52, 1412-1422.

[1] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[2] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[3] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[4] Yapeng Zhang, Wentao Cai, Qi Zhang, Qian Li, Yahui Wang, Ruiqi Peng, Haiqi Yin, Xin Hu, Zezhao Wang, Bo Zhu, Xue Gao, Yan Chen, Huijiang Gao, Lingyang Xu, Junya Li, Lupei Zha. Integrated analyses of genomic and transcriptomic data reveal candidate variants associated with carcass traits in Huaxi cattle[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3169-3184.
[5] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[6] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[7] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[8] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[9] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[10] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[11] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[12] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[13] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[14] Berhane S. Gebregziabher, Shengrui Zhang, Jing Li, Bin Li, Junming Sun. Identification of genomic regions and candidate genes underlying carotenoid accumulation in soybean using next-generation sequen-cing based bulk segregant analysis[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2063-2079.
[15] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
No Suggested Reading articles found!