|
Adhikari L, Raupp J, Wu S, Koo D H, Friebe B, Poland J. 2023. Genomic characterization and gene bank curation of Aegilops: the wild relatives of wheat. Frontiers in Plant Science, 14, 1268370.
Adhikari L, Raupp J, Wu S, Wilson D, Evers B, Koo D H, Singh N, Friebe B, Poland J. 2022. Genetic characterization and curation of diploid A-genome wheat species. Plant Physiology, 188, 2101-2114.
Adhikari T B, Anderson J M, Goodwin S B. 2003. Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology, 93, 1158-1164.
Adhikari T B, Yang X, Cavaletto J R, Hu X, Buechley G, Ohm H W, Shaner G, Goodwin S B. 2004. Molecular mapping of Stb1, a potentially durable gene for resistance to septoria tritici blotch in wheat. Theoretical and Applied Genetics, 109, 944-953.
Alemu A, Brazauskas G, Gaikpa D S, Henriksson T, Islamov B, Jørgensen L N, Koppel M, Koppel R, Liatukas Ž, Svensson J T, Chawade A. 2021. Genome-wide association analysis and genomic prediction for adult-plant resistance to septoria tritici blotch and powdery mildew in winter wheat. Frontiers in Genetics, 12, 661742.
Arraiano L S, Brown J K M. 2006. Identification of isolate-specific and partial resistance to septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathology, 55, 726-738.
Balfourier F, Bouchet S, Robert S, De Oliveira R, Rimbert H, Kitt J, Choulet F, Consortium I W G S, Consortium B, Paux E. 2019. Worldwide phylogeography and history of wheat genetic diversity. Science advances, 5, eaav0536.
Binalf L, Shifa H, Tadesse W. 2024. Association mapping of septoria tritici blotch resistance in bread wheat in Bale and Arsi highlands, Ethiopia. Heliyon, 10, e32265.
Brading P A, Verstappen E C P, Kema G H J, Brown J K M. 2002. A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the septoria tritici blotch pathogen. Phytopathology, 92, 439-445.
Brown J K, Chartrain L, Lasserre-Zuber P, Saintenac C. 2015. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genetics and Biology, 79, 33-41.
Castro A C, Simón M R. 2017. The impact of Septoria tritici blotch in bread making quality among argentinean wheat cultivars. Journal of Cereal Science, 77, 259-265.
Chen H, Wang Q, Fan M, Zhang X, Feng P, Zhu L, Wu J, Cheng X, Wang J. 2023. A single nucleotide variation of CRS2 affected the establishment of photosynthetic system in rice. International Journal of Molecular Sciences, 24, 5796.
Collins B, Chenu K. 2021. Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate. Climate Risk Management, 32, 100300.
Cowling S G, Br lé-Babel A L, Somers D, Lamari L. 2004. Identification and mapping of host resistance genes to Septoria tritici blotch of wheat. Phytopathology, 94, 22.
Dean R, Van Kan J a L, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414-430.
Feldman M. 2001. Origin of cultivated wheat. In: Bonjean A P, Angus W J, eds. The World Wheat Book: A History of Wheat Breeding. London: Intercept Ltd, 3-56.
Feurtey A, Lorrain C, Mcdonald M C, Milgate A, Solomon P S, Warren R, Puccetti G, Scalliet G, Torriani S F F, Gout L, Marcel T C, Suffert F, Alassimone J, Lipzen A, Yoshinaga Y, Daum C, Barry K, Grigoriev I V, Goodwin S B, Genissel A, et al. 2023. A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Nature Communications, 14, 1059.
Gao X, Li F, Sun Y, Jiang J, Tian X, Li Q, Duan K, Lin J, Liu H, Wang Q. 2024. Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight. Journal of Integrative Agriculture, 23, 1238-1258.
Hafeez A N, Chartrain L, Feng C, Cambon F, Clarke M, Griffiths S, Hayta S, Jiang M, Keller B, Kirby R, Kolodziej M C, Powell O R, Smedley M, Steuernagel B, Xian W, Wingen L U, Cheng S, Saintenac C, Wulff B B H, Brown J K M. 2023. Septoria tritici blotch resistance gene Stb15 encodes a lectin receptor-like kinase. Nature Plants, 11, 410-420.
Hu W, Fu L, Gao D, Li D, Liao S, Lu C. 2023. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in the high-quality soft wheat cultivar Yangmai 15. Journal of Integrative Agriculture, 22, 360-370.
International Wheat Genome Sequencing Consortium. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345, 1251788.
Jiao C, Xie X, Hao C, Chen L, Xie Y, Garg V, Zhao L, Wang Z, Zhang Y, Li T, Fu J, Chitikineni A, Hou J, Liu H, Dwivedi G, Liu X, Jia J, Mao L, Wang X, Appels R, et al. 2025. Pan-genome bridges wheat structural variations with habitat and breeding. Nature, 637, 384-393.
Lagudah E, Mcfadden H, Singh R, Huerta-Espino J, Bariana H, Spielmeyer W. 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 114, 21-30.
Laidig F, Feike T, Hadasch S, Rentel D, Klocke B, Miedaner T, Piepho H P. 2021. Breeding progress of disease resistance and impact of disease severity under natural infections in winter wheat variety trials. Theoretical and Applied Genetics, 134, 1281-1302.
Langlands-Perry C, Cuenin M, Bergez C, Krima S B, Gélisse S, Sourdille P, Valade R, Marcel T C. 2021. Resistance of the wheat cultivar ‘Renan’to Septoria leaf blotch explained by a combination of strain specific and strain non-specific QTL mapped on an ultra-dense genetic map. Genes, 13, 100.
Li H, Zhou S, Zhao W, Su S, Peng Y. 2009. A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Molecular Biology, 69, 337-346.
Liu Y, Fu B, Zhang Q, Cai J, Guo W, Zhai W, Wu J. 2024. Genetic diversity and population structure of wheat landraces in Southern Winter Wheat Region of China. Bmc Genomics, 25, 664.
Louriki S, Rehman S, El Hanafi S, Bouhouch Y, Al-Jaboobi M, Amri A, Douira A, Tadesse W. 2021. Identification of resistance sources and genome-wide association mapping of Septoria tritici blotch resistance in spring bread wheat germplasm of ICARDA. Frontiers in Plant Science, 12, 600176.
Odilbekov F, Armoniené R, Koc A, Svensson J, Chawade A. 2019. GWAS-assisted genomic prediction to predict resistance to Septoria tritici blotch in Nordic winter wheat at seedling stage. Frontiers in Genetics, 10, 1224.
Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526-528.
Patial M, Navathe S, He X, Kamble U, Kumar M, Joshi A K, Singh P K. 2024. Novel resistance loci for quantitative resistance to Septoria tritici blotch in Asian wheat (Triticum aestivum) via genome-wide association study. BMC Plant Biology, 24, 846.
Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
Rudd J J, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai N M, Powers S J. 2015. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiology, 167, 1158-1185.
Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary S M T, Poucet T, Marande W, Berges H, Xu S, Jaouannet M, Favery B, Alassimone J, Sánchez-Vallet A, Faris J, Kema G, Robert O, Langin T. 2021. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nature Communications, 12, 433.
Singh A, Singh U, Mittal D, Grover A. 2010. Transcript expression and regulatory characteristics of a rice glycosyltransferase OsGT61-1 gene. Plant Science, 179, 114-122.
Thauvin J N, Gélisse S, Cambon F, Langin T, The Breedwheat Consortium, Marcel T C, Saintenac C. 2024. The genetic architecture of resistance to septoria tritici blotch in French wheat cultivars. BMC Plant Biology, 24, 1212.
Thomas M R, Cook R J, King J E. 1989. Factors affecting development of Septoria tritici in winter wheat and its effect on yield. Plant Pathology, 38, 246-257.
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L. 2014. Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12, 787-796.
Watson J, Zheng B, Chapman S, Chenu K. 2017. Projected impact of future climate on water-stress patterns across the Australian wheatbelt. Journal of Experimental Botany, 68, 5907-5921.
Wei C.2011. Overlapping codon model, phylogenetic clustering, and alternative partial expectation conditional maximization algorithm. Ames: Iowa State University.
Winfield M O, Allen A M, Wilkinson P A, Burridge A J, Barker G L, Coghill J, Waterfall C, Wingen L U, Griffiths S, Edwards K J. 2018. High‐density genotyping of the AE Watkins Collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnology Journal, 16, 165-175.
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang C R, Chen S, Xu C, Tang X. 2024. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. Rice, 17, 54.
Yang N, Mcdonald M C, Solomon P S, Milgate A W. 2018. Genetic mapping of Stb19, a new resistance gene to Zymoseptoria tritici in wheat. Theoretical and Applied Genetics, 131, 2765-2773.
Yang N, Ovenden B, Baxter B, Mcdonald M C, Solomon P S, Milgate A. 2022. Multi-stage resistance to Zymoseptoria tritici revealed by GWAS in an Australian bread wheat diversity panel. Frontiers in Plant Science, 13, 990915.
Zhao H, Frank T, Tan Y, Zhou C, Jabnoune M, Arpat A B, Cui H, Huang J, He Z, Poirier Y. 2016. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytologist, 211, 926-939.
Zhong Z, Marcel T C, Hartmann F E, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N. 2017. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytologist, 214, 619-631.
Zhou Y, Zhao X, Li Y, Xu J, Bi A, Kang L, Xu D, Chen H, Wang Y, Wang Y, Liu S, Jiao C, Lu H, Wang J, Yin C, Jiao Y, Lu F. 2020. Triticum population sequencing provides insights into wheat adaptation. Nature Genetics, 52, 1412-1422.
|