Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search

Stem-breaking strength affects stem lodging and BnaC04.NST1–BnaA10.COMT enhances its resistance in Brassica napus

Bo Song1*, Yuan Guo1*, Wanlong Zhang1, Yunyun Ma1, Wenhui Liao1, Yuxin Liao1, Dengmao Yang2, Jungang Dong1, Saiqi Yang1, Zijin Liu1, Mingxun Chen1#

1 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/National Yangling Agricultural Biotechnology & Breeding Center/Shaanxi Key Laboratory of Crop Heterosis/College of Agronomy, Northwest A&F University, Yangling 712100, China
2 Altay Vocational and Technical College, Altay 836500, China

 Highlights 

· Stem-breaking strength emerged as the primary determinant of stem-lodging angle in Brassica napus.

· Increased stem-breaking strength is associated with expanded xylem/interfascicular fiber areas and higher lignin, cellulose, and hemicellulose content.

· The BnaC04.NST1–BnaA10.COMT pathway functions as a critical regulator of stem-breaking strength by controlling fiber development and lignin accumulation.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
甘蓝型油菜是全球重要的油料作物。茎倒伏严重降低油菜产量和种子品质。甘蓝型油菜茎倒伏农艺性状及其分子机制尚不清楚。本研究对158份甘蓝型油菜种质开展了连续两年的田间茎倒伏评估和性状调查,发现茎强度与茎倒伏角度呈现强相关性,并将其确立为评估和改良甘蓝型油菜茎倒伏的关键性状。通过比较分析高(Sy28)、低(Gl210)茎强度极端种质的茎发育特征,发现茎强度的增强与木质部/束间纤维面积的扩大以及木质素、纤维素和半纤维素含量的增加密切相关。茎强度极端种质的转录组学分析揭示了形成层活性调控、木质素/纤维素/半纤维素生物合成以及次生细胞壁形成等多个调控过程可能参与该过程。进一步发现BnaC04.NST1–BnaA10.COMT模型通过调控木质部/束间纤维的发育及木质素的积累,进而影响茎强度和倒伏。这些结果不仅加深了对茎强度在甘蓝型油菜抗倒伏机制中作用的认识,也为培育强抗倒伏甘蓝型油菜品种提供了优异种质和基因资源。




Abstract  

Brassica napus represents a major oilseed crop essential for global vegetable oil production.  Stem lodging, which constitutes the primary form of lodging, significantly reduces yield and seed quality.  Nevertheless, the agronomic characteristics and molecular mechanisms underlying stem lodging remain inadequately understood.  Through a two-year field assessment of 158 B. napus accessions, this study identified stem-breaking strength as the trait most highly correlated with stem-lodging angle, establishing it as the principal predictor of stem lodging in this species.  Comparative analysis between accessions with contrasting stem-breaking strength (‘Sy28’ high, ‘Gl210’ low) demonstrated that enhanced stem-breaking strength correlates with increased xylem and interfascicular fiber areas, along with higher concentrations of lignin, cellulose, and hemicellulose in stems.  Transcriptome analysis of these accessions revealed stem-breaking strength associated genes involved in cambium activity; lignin, cellulose, and hemicellulose biosynthesis; and transcriptional regulation of secondary cell wall formation.  This research identified the BnaC04.NST1–BnaA10.COMT pathway as a fundamental regulator of stem-breaking strength, controlling xylem and interfascicular fiber development and lignin accumulation.  These insights advance understanding of stem-breaking strength's role in lodging resistance and establish a molecular pathway for its enhancement in B. napus.

Keywords:  stem-breaking strength       BnaC04.NST1–BnaA10.COMT       stem-lodging resistance       Brassica napus  
Online: 23 September 2025  
Fund: 

This work was supported by the National Key Research and Development Program (2024YFD1200400), the Scientific and Technological Innovation Team of Shaanxi Province, China (2024RS-CXTD-69), the Science and Technology Program Project of Yangling Demonstration Zone, China (2024NY-25), and the Key Research and Development Program of Shaanxi Province, China (2025NC-YBXM-012).

 

About author:  Bo Song, E-mail: 15686042603@163.com; Yuan Guo, E-mail: guoyuan2109@163.com; #Correspondence Mingxun Chen, E-mail: cmx786@nwafu.edu.cn. *These authors contributed equally to this study.

Cite this article: 

Bo Song, Yuan Guo, Wanlong Zhang, Yunyun Ma, Wenhui Liao, Yuxin Liao, Dengmao Yang, Jungang Dong, Saiqi Yang, Zijin Liu, Mingxun Chen. 2025.

Stem-breaking strength affects stem lodging and BnaC04.NST1–BnaA10.COMT enhances its resistance in Brassica napus . Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.027

Baylis A D, Wright I T J. 1990. The effects of lodging and a paclobutrazol-chlormequat chloride mixture on the yield and quality of oilseed rape. Annals of Applied Biology, 116, 287–295.

Berry P M, Griffin J M, Sylvester-Bradley R, Scott R K, Spink J H, Baker C J, Clare R W. 2000. Controlling plant form through husbandry to minimise lodging in wheat. Field Crops Research, 67, 59–81.

Bhinu V S, Li R, Huang J, Kaminskyj S, Sharpe A, Hannoufa A. 2009. Perturbation of lignin biosynthesis pathway in Brassica napus (canola) plants using RNAi. Canadian Journal of Plant Science, 89, 441-453.

Bonawitz N D, Chapple C. 2010. The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annual Review of Genetics, 44, 337–363.

Boyes D C, Zayed A M, Ascenzi R, McCaskill A J, Hoffman N E, Davis K R, Görlach J. 2001. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. The Plant Cell, 13, 1499–1510.

Brown D M, Goubet F, Wong V W, Goodacre R, Stephens E, Dupree P, Turner S R. 2007. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant Journal, 52, 1154–1168.

Brown D M, Zeef L A, Ellis J, Goodacre R, Turner S R. 2005. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. The Plant Cell, 17, 2281–2295.

Brown D M, Zhang Z, Stephens E, Dupree P, Turner S R. 2009. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant Journal, 57, 732–746.

Burk D H, Ye Z H. 2002. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. The Plant Cell, 14, 2145–2160.

Clough S J, Bent A F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735–743.

Dang T V T, Lee S, Cho H, Choi K, Hwang I. 2023. The LBD11-ROS feedback regulatory loop modulates vascular cambium proliferation and secondary growth in Arabidopsis. Molecular Plant, 16, 1131–1145.

Do C T, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L. 2007. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta, 226, 1117–1129.

Etchells J P, Provost C M, Mishra L, Turner S R. 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development, 140, 2224–2234.

Etchells J P, Turner S R. 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development, 137, 767–774.

Ferjani A, Hanai K, Gunji S, Maeda S, Sawa S, Tsukaya H. 2015. Balanced cell proliferation and expansion is essential for flowering stem growth control. Plant Signaling & Behavior, 10, e992755.

Fischer U, Kucukoglu M, Helariutta Y, Bhalerao R P. 2019. The dynamics of cambial stem cell activity. Annual Review of Plant Biology, 70, 293–319.

Fisher K, Turner S. 2007. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Current Biology, 17, 1061–1066.

Franke R, Hemm M R, Denault J W, Ruegger M O, Humphreys J M, Chapple C. 2002. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant Journal, 30, 47–59.

Fraser C M, Chapple C. 2011. The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book, 9, e0152.

Geng P, Zhang S, Liu J, Zhao C, Wu J, Cao Y, Fu C, Han X, He H, Zhao Q. 2020. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiology, 182, 1272–1283.

Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barrière Y, Lapierre C, Jouanin L. 2003. A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Molecular Biology, 51, 973–989.

Guo Y, Qin G, Gu H, Qu L J. 2009. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in ArabidopsisThe Plant Cell, 21, 3518–3534.

Hu Y, Javed H H, Asghar M A, Peng X, Brestic M, Skalicky M, Ghafoor A Z, Cheema H N, Zhang F F, Wu Y C. 2022. Enhancement of lodging resistance and lignin content by application of organic carbon and silicon fertilization in Brassica napus L. Frontiers in Plant Science, 13, 807048.

Huang X S, Wang W, Zhang Q, Liu J H. 2013. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiology, 162, 1178–1194.

Huangfu L, Chen R, Lu Y, Zhang E, Miao J, Zuo Z, Zhao Y, Zhu M, Zhang Z, Li P, Xu Y, Yao Y, Liang G, Xu C, Zhou Y, Yang Z. 2022. OsCOMT, encoding a caffeic acid O-methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. Plant Biotechnology Journal, 20, 1122–1139.

Ibañes M, Fàbregas N, Chory J, Caño-Delgado A I. 2009. Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proceedings of the National Academy of Sciences of the United States of America, 106, 13630–13635.

Jiang J, Liao X, Jin X, Tan L, Lu Q, Yuan C, Xue Y, Yin N, Lin N, Chai Y. 2020. MYB43 in oilseed rape (Brassica napus) positively regulates vascular lignification, plant morphology and yield potential but negatively affects resistance to sclerotinia sclerotiorum. Genes, 11, 581.

Joseph G M D, Mohammadi M, Sterling M, Baker C J, Gillmeier S G, Soper D, Jesson M, Blackburn G A, Whyatt J D, Gullick D, Murray J, Berry P, Hartley D, Finnan J. 2020. Determination of crop dynamic and aerodynamic parameters for lodging prediction. Journal of Wind Engineering and Industrial Aerodynamics, 202, 104169.

Kendall S L, Holmes H, White C A, Clarke S M, Berry P M. 2017. Quantifying lodging-induced yield losses in oilseed rape. Field Crops Research, 211, 106–113.

Kerstens S, Decraemer W F, Verbelen J P. 2001. Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiology, 127, 381–385.

Khan S, Anwar S, Kuai J, Ullah S, Fahad S, Zhou G. 2017. Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Frontiers in Plant Science, 8, 532.

Kuai J, Sun Y, Guo C, Zhao L, Zuo Q, Wu J, Zhou G. 2017. Root-applied silicon in the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics. Field Crops Research, 200, 88–97.

Laidig F, Feike T, Klocke B, Macholdt J, Miedaner T, Rentel D, Piepho H P. 2021. Long-term breeding progress of yield, yield-related, and disease resistance traits in five cereal crops of German variety trials. Theoretical and Applied Genetics, 134, 3805–3827.

Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J. 2001. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry, 57, 1187–1195.

Lee C, Zhong R, Ye Z H. 2012. Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant and Cell Physiology, 53, 135–143.

Lee H Y, Byeon Y, Lee K, Lee H J, Back K. 2014. Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. Journal of Pineal Research, 57, 418-426.

Li C, Ding Z, Cai Z, Ruan Y, Lü P, Liu Y. 2025. Exogenous melatonin boosts heat tolerance in rosa hybrida via RhCOMT1 modulation. Plants, 14, 29.

Li D, Guo Y, Zhang D, He S, Gong J, Ma H, Gao X, Wang Z, Jiang L, Dun X, Hu S, Chen M. 2020. Melatonin represses oil and anthocyanin accumulation in seeds. Plant Physiology, 183, 898-914.

Li H, Cheng X, Zhang L, Hu J, Zhang F, Chen B, Xu K, Gao G, Li H, Li L, Huang Q, Li Z, Yan G, Wu X. 2018. An integration of genome-wide association study and gene co-expression network analysis identifies candidate genes of stem lodging-related traits in Brassica napus. Frontiers in Plant Science, 9, 796.

Liu C, Chen H, Er H L, Soo H M, Kumar P P, Han J H, Liou Y C, Yu H. 2008. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 135, 1481–1491.

Liu C, Han L B, Wen Y, Lu C, Deng B, Liu Z, Deng X, Shen N, Tang D, Li Y B. 2025. The Magnaporthe oryzae effector MoBys1 suppresses rice immunity by targeting OsCAD2 to manipulate host jasmonate and lignin metabolism. New Phytologis, 246, 280–297.

Ma Q H. 2009. The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. Journal of Experimental Botany, 60, 2763–2771.

MacMillan C P, Mansfield S D, Stachurski Z H, Evans R, Southerton S G. 2010. Fasciclin-like arabinogalactan proteins: Specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant Journal, 62, 689–703.

McCarthy R L, Zhong R, Ye Z H. 2009. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant and Cell Physiology, 50, 1950–1964.

Meier U. 2001. Growth Stages of mono- and dicotyledonous plants. In: BBCH Monograph. 2nd ed. Federal Biological Research Centre of Agriculture and Forest. Braunschweig, Germany.

Miller C N, Harper A L, Trick M, Wellner N, Werner P, Waldron K W, Bancroft I. 2018. Dissecting the complex regulation of lodging resistance in Brassica napus. Molecular Breeding, 38, 30.

Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M. 2007. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of ArabidopsisThe Plant Cell, 19, 270–280.

Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2005. The NAC transcription factors Zhang NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell, 17, 2993–3006.

Miyashima S, Sebastian J, Lee J Y, Helariutta Y. 2013. Stem cell function during plant vascular development. EMBO Journal, 32, 178–193.

Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H. 1998. A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO Journal, 17, 5563–5576.

Nieminen K, Blomster T, Helariutta Y, Mahonen A P. 2015. Vascular cambium development. Arabidopsis Book, 13, e0177.

Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao R P. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. The Plant Cell, 20, 843–855.

Parvathi K, Chen F, Guo D, Blount J W, Dixon R A. 2001. Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant Journal, 25, 193–202.

Pauly M, Keegstra K. 2016. Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annual Review of Plant Biology, 67, 235–259.

Pedersen G B, Blaschek L, Frandsen K E H, Noack L C, Persson S. 2023. Cellulose synthesis in land plants. Molecular Plant, 16, 206–231.

Persson S, Wei H, Milne J, Page G P, Somerville C R. 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences of the United States of America, 102, 8633–8638.

Polko J K, Kieber J J. 2019. The regulation of cellulose biosynthesis in plants. The Plant Cell, 31, 282–296.

Purushotham P, Ho R, Zimmer J. 2020. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science, 369, 1089–1094.

Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau J P, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W. 2004. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. The Plant Cell, 16, 2749–2771.

Ruonala R, Ko D, Helariutta Y. 2017. Genetic networks in plant vascular development. Annual Review of Genetics, 51, 335–359.

De Rybel B, Mähönen A P, Helariutta Y, Weijers D. 2016. Plant vascular development: From early specification to differentiation. Nature Reviews Molecular Cell Biology, 17, 30–40.

Scarisbrick D H, Addo-Quaye A A, Daniels R W, Mahamud S. 1985. The effect of paclobutrazol on plant height and seed yield of oil-seed rape (Brassica napus L.). Journal of Agricultural Science, 105, 605–612.

Scheller H V, Ulvskov P. 2010. Hemicelluloses. Annual Review of Plant Biology, 61, 263–289.

Schilmiller A L, Stout J, Weng J K, Humphreys J, Ruegger M O, Chapple C. 2009. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant Journal, 60, 771–782.

Setter T L, Laureles E V, Mazaredo A M. 1997. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis. Field Crops Research, 49, 95–106.

Smit M E, McGregor S R, Sun H, Gough C, Bagman A M, Soyars C L, Kroon J T, Gaudinier A, Williams C J, Yang X, Nimchuk Z L, Weijers D, Turner S R, Brady S M, Etchells J P. 2020. A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in ArabidopsisThe Plant Cell, 32, 319–335.

Spicer R, Groover A. 2010. Evolution of development of vascular cambia and secondary growth. New Phytologist, 186, 577–592.

Sun Q, Gu X, Chen L, Xu X, Wei Z, Pan Y, Gao Y. 2022. Monitoring maize canopy chlorophyll density under lodging stress based on UAV hyperspectral imagery. Computers and Electronics in Agriculture, 193, 106671.

Szyjanowicz P M, McKinnon I, Taylor N G, Gardiner J, Jarvis M C, Turner S R. 2004. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant Journal, 37, 730–740.

Taylor N G, Howells R M, Huttly A K, Vickers K, Turner S R. 2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 1450-1455.

Tian Z, Wang X, Dun X, Tian Z, Zhang X, Li J, Ren L, Tu J, Wang H. 2023. Integrating biochemical and anatomical characterizations with transcriptome analysis to dissect superior stem strength of ZS11 (Brassica napus). Frontiers in Plant Science, 14, 1144892.

Tsegaye Z, Alemu T, Desta F A, Assefa F. 2022. Plant growth-promoting rhizobacterial inoculation to improve growth, yield, and grain nutrient uptake of teff varieties. Frontiers in Microbiology, 13, 896770.

Vignols F, Rigau J, Torres M A, Capellades M, Puigdomènech P. 1995. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. The Plant Cell, 7, 407–416.

Wang C, Xu S, Yang C, You Y, Zhang J, Kuai J, Xie J, Zuo Q, Yan M, Du H, Ma N, Liu B, You L, Wang T, Wu H. 2024. Determining rapeseed lodging angles and types for lodging phenotyping using morphological traits derived from UAV images. European Journal of Agronomy, 155, 127104.

Wang T, Li X J, Qin L H, Liang X, Xue H H, Guo J, Li S F, Zhang L W. 2022. Better detoxifying effect of ripe forsythiae fructus over green forsythiae fructus and the potential mechanisms involving bile acids metabolism and gut microbiota. Frontiers in Pharmacology, 13, 987695.

Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H, Chen X, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z, Li X, Shamsi I H, Jilani G, Wu L, et al. 2019. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of Ecotype divergence. Molecular Plant, 12, 30-43.

Wybouw B, Zhang X, Mähönen A P. 2024. Vascular cambium stem cells: Past, present and future. New Phytologist, 243, 851–865.

Xu C, Shen Y, He F, Fu X, Yu H, Lu W, Li Y, Li C, Fan D, Wang H C, Luo K. 2019. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytologist, 222, 752–767.

Xuan L, Yan T, Lu L, Zhao X, Wu D, Hua S, Jiang L. 2020. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). Plant, Cell & Environment, 43, 675-691.

Yin N, Li B, Liu X, Liang Y, Lian J, Xue Y, Qu C, Lu K, Wei L, Wang R, Li J, Chai Y. 2022. Two types of cinnamoyl-CoA reductase function divergently in accumulation of lignins, flavonoids and glucosinolates and enhance lodging resistance in Brassica napus. Crop Journal, 10, 647–660.

Yoon J, Choi H, An G. 2015. Roles of lignin biosynthesis and regulatory genes in plant development. Journal of Integrative Plant Biology, 57, 902–912.

Yu H, Soler M, San Clemente H, Mila I, Paiva J A, Myburg A A, Bouzayen M, Grima-Pettenati J, Cassan-Wang H. 2015. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: Evidence for the role of EgrIAA4 in wood formation. Plant and Cell Physiology, 56, 700–714.

Yuan Y, Teng Q, Zhong R, Ye Z H. 2013. The Arabidopsis DUF231 domain-containing protein ESK1 mediates 2-O- and 3-O-acetylation of xylosyl residues in xylan. Plant and Cell Physiology, 54, 1186–1199.

Zhang Q, Xie Z, Zhang R, Xu P, Liu H, Yang H, Doblin M S, Bacic A, Li L. 2018. Blue light regulates secondary cell wall thickening via myc2/myc4 activation of the nst1-directed transcriptional network in ArabidopsisThe Plant Cell, 30, 2512–2528.

Zhang Y, Chen S, Xu L, Chu S, Yan X, Lin L, Wen J, Zheng B, Chen S, Li Q. 2024. Transcription factor PagMYB31 positively regulates cambium activity and negatively regulates xylem development in poplar. The Plant Cell, 36, 1806–1828.

Zhao D, Luan Y, Shi W, Tang Y, Huang X, Tao J. 2022. Melatonin enhances stem strength by increasing lignin content and secondary cell wall thickness in herbaceous peony. Journal of Experimental Botany, 73, 5974-5991.

Zhong R, Burk D H, Morrison W H 3rd, Ye Z H. 2002. A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. The Plant Cell, 14, 3101–3117.

Zhong R, Lee C, Ye Z H. 2010a. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends in Plant Science, 15, 625–632.

Zhong R, Lee C, Ye Z H. 2010b. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant, 3, 1087–1103.

Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z H. 2008. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell, 20, 2763–2782.

Zhong R, McCarthy R L, Haghighat M, Ye Z H. 2013. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS ONE, 8, e69219.

Zhong R, Richardson E A, Ye Z H. 2007a. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in ArabidopsisThe Plant Cell, 19, 2776–2792.

Zhong R, Richardson E A, Ye Z H. 2007b. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 225, 1603–1611.

Zhong R, Ye Z H. 2009. Transcriptional regulation of lignin biosynthesis. Plant Signaling & Behavior, 4, 1028–1034.

Zhong R, Ye Z H. 2015. Secondary cell walls: Biosynthesis, patterned deposition and transcriptional regulation. Plant and Cell Physiology, 56, 195–214.

Zhu Y, Li L. 2021. Multi-layered regulation of plant cell wall thickening. Plant and Cell Physiology, 62, 1867–1873.

Zhu Y, Song D, Xu P, Sun J, Li L. 2018. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnology Journal, 16, 808–817.

[1] Ying Zhang, Rui Wang, Tianshun Luo, Jingyan Fu, Meng Yin, Maolin Wang, Yun Zhao. CRISPR-mediated editing of BnaNRAMP1 homologous copies creates a low Cd-accumulation oilseed rape germplasm with unaffected yield[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1704-1717.
[2] Jianjun Wang, Yanan Shao, Xin Yang, Chi Zhang, Yuan Guo, Zijin Liu, Mingxun Chen.

Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1864-1878.

[3] Qianwei Zhang, Yuanyi Mao, Zikun Zhao, Xin Hu, Ran Hu, Nengwen Yin, Xue Sun, Fujun Sun, Si Chen, Yuxiang Jiang, Liezhao Liu, Kun Lu, Jiana Li, Yu Pan.

A Golden2-like transcription factor, BnGLK1a, improves chloroplast development, photosynthesis, and seed weight in rapeseed [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1481-1493.

[4] Shahid Ullah Khan, Ahmad Ali, Sumbul Saeed, Yonghai Fan, Ali Shehazd, Hameed Gul, Shah Fahad, Kun Lu. Ovule number as a rising star for regulating seed yield: Hope or hype[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3623-3640.
[5] XUE Yu-fei, INKABANGA TSEKE Alain, YIN Neng-wen, JIANG Jia-yi, ZHAO Yan-ping, LU Kun, LI Jia-na, DING Yan-song, ZHANG Shi-qing, CHAI You-rong. Biotechnology of α-linolenic acid in oilseed rape (Brassica napus) using FAD2 and FAD3 from chia (Salvia hispanica)[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3810-3815.
[6] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
No Suggested Reading articles found!