Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Uncovering the spatiotemporal evolution and driving mechanisms of soybean planting area in China from 2000 to 2022

Wenbin Liu1, 2, Shu Li2, Juan Cao1#, Jun Xie3, Jinwei Dong1, Jichong Han3, Qinghang Mei3, Lichang Yin1, Hongyan Zhang4, Hong Zhou1, Fulu Tao1

1 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2 Changjiang Institute of Survey Technical Research, Ministry of Water Resources, Wuhan 430011, China

3 School of National Safety and Emergency Management, Beijing Normal University, Beijing 100088, China

4 School of Computer Sciences, China University of Geosciences, Wuhan 430074, China

 Highlights 

l Utilized multi-source data and GEE for nationwide annual soybean mapping

l Developed ChinaSoyA30m, the first 30-m soybean dataset for China from 2000 to 2022

l Revealed regional disparities in soybean cultivation trends and centroid movement

l Identified regional drivers of soybean planting area shifts

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

了解大豆种植的空间分布、时间动态及其驱动因素,对于产量评估、农业规划和国家粮食安全具有重要意义。然而,当前中国大范围、高分辨率、长时间序列的大豆种植数据仍较为缺乏。本研究构建了2000—2022年中国30米分辨率的大豆种植数据集(ChinaSoyA30m),并系统分析了大豆种植的时空变化特征及其驱动机制。研究基于中国主要农作物的物候特征生成监督分类所需的训练样本,并采用Gap统计量、K-means聚类与光谱角匹配等方法提高分类可靠性。在Google Earth EngineGEE)平台上,结合高密度Landsat影像,开展监督分类生成年度大豆分布图。与现有六套大豆数据集对比,ChinaSoyA30m具有较高精度,在省、市、县级尺度上与统计数据的相关性分别达R2=0.950.890.80基于实地验证样本的F1分数分别为70.1680.4078.38%。结果显示,自2000年以来,中国大豆种植面积整体呈波动上升趋势,并呈现出显著的区域差异性。北方是大豆主产区,种植中心位置稳定,空间变化较小。第一产业增加值是大豆种植面积变化的主要驱动因素,其中农业机械总动力在华北地区的影响尤为突出,体现了不同区域驱动机制的差异性。本研究首次提供了中国长期、高分辨率的大豆种植数据集,并为推动大豆可持续发展提供了科学支撑。



Abstract  

Understanding the spatial distribution, temporal dynamics, and driving factors of soybean cultivation is critical for yield estimation, agricultural planning, and national food security. However, high-resolution, long-term, and nationwide datasets of soybean cultivation in China remain scarce. This study developed a 30-m resolution dataset of soybean in China from 2000–2022 using multi-source data (ChinaSoyA30m), and analyzed the spatiotemporal dynamics and driving forces of soybean cultivation. The phenological characteristics of major crops across China were evaluated to generate training samples for supervised classification. Gap statistics, K-means clustering, and spectral angle mapping were employed to enhance classification reliability. A supervised classification approach was implemented on Google Earth Engine (GEE) using dense Landsat data to produce annual soybean maps. ChinaSoyA30m demonstrates competitive performance compared to six existed soybean datasets, with strong correlations with provincial, prefectural, and county statistics (R2=0.95, 0.89, and 0.80), and the F1 scores validated against ground truth data were 70.16, 80.40, and 78.38%. Since 2000, the soybean planting area has exhibited a fluctuating upward trend with distinct regional characteristics. Northern China emerged as the primary production area, characterized by a stable planting centroid and small spatial variation. The primary driver of soybean area dynamics was the value added of primary industry, while agricultural machinery power was a significant factor in North China, highlighting regional differences in driving mechanisms. This study provides the first long-term, high-resolution soybean planting dataset for China and offers valuable insights into the sustainable development of soybean cultivation.

Keywords:  soybean       remote sensing        classification        spatiotemporal dynamics        driving factors  
Online: 17 July 2025  
Fund: 

This study was supported by the China Postdoctoral Science Foundation (2023M743450) and Postdoctoral Fellowship Program of CPSF (GZC20232614).  

About author:  Wenbin Liu, E-mail: liuwenbin@whu.edu.cn; #Correspondence Juan Cao, Mobile: +86-18810183758, E-mail: caojuan_@mail.bnu.edu.cn

Cite this article: 

Wenbin Liu, Shu Li, Juan Cao, Jun Xie, Jinwei Dong, Jichong Han, Qinghang Mei, Lichang Yin, Hongyan Zhang, Hong Zhou, Fulu Tao. 2025. Uncovering the spatiotemporal evolution and driving mechanisms of soybean planting area in China from 2000 to 2022. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.021

Adjemian M K, Smith A, He W. 2021. Estimating the market effect of a trade war: The case of soybean tariffs. Food Policy, 105, 102152.

Ashourloo D, Nematollahi H, Huete A, Aghighi H, Azadbakht M, Shahrabi H S, Goodarzdashti S. 2022. A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images. Remote Sensing of Environment, 280, 113206.

Barboza Martignone G M, Ghosh B, Papadas D, Behrendt K. 2024. The rise of Soybean in international commodity markets: A quantile investigation. Heliyon, 10, e34669.

Belgiu M, Bijker W, Csillik O, Stein A. 2021. Phenology-based sample generation for supervised crop type classification. International Journal of Applied Earth Observation and Geoinformation, 95, 102264.

Cao X, Zeng W, Wu M, Li T, Chen S, Wang W. 2021. Water resources efficiency assessment in crop production from the perspective of water footprint. Journal of Cleaner Production, 309, 127371.

Cavalett O, Ortega E. 2010. Integrated environmental assessment of biodiesel production from soybean in Brazil. Journal of Cleaner Production, 18, 55-70.

Chai L, Liu A, Li X, Guo Z, He W, Huang J, Bai T, Liu J. 2024. Telecoupled impacts of the Russia–Ukraine war on global cropland expansion and biodiversity. Nature Sustainability, 7, 432-441.

Chen H, Li H, Liu Z, Zhang C, Zhang S, Atkinson P M. 2023. A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images. Remote Sensing of Environment, 295, 113679.

Chen W, Zhang B, Kong X, Wen L, Liao Y, Kong L. 2022. Soybean Production and Spatial Agglomeration in China from 1949 to 2019. Land, 11, 734.

Dennison P E, Halligan K Q, Roberts D A. 2004. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sensing of Environment, 93, 359-367.

Dong J, Fu Y, Wang J, Tian H, Fu S, Niu Z, Han W, Zheng Y, Huang J, Yuan W. 2020. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth System Science Data, 12, 3081-3095.

Dong J, Xiao X, Kou W, Qin Y, Zhang G, Li L, Jin C, Zhou Y, Wang J, Biradar C, Liu J, Moore B. 2015. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sensing of Environment, 160, 99-113.

Gao Z, Guo D, Ryu D, Western A W. 2023. Training sample selection for robust multi-year within-season crop classification using machine learning. Computers and Electronics in Agriculture, 210, 107927.

Gocic M, Trajkovic S. 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172-182.

Gong B. 2018. Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015. Journal of Development Economics, 132, 18-31.

Guilpart N, Iizumi T, Makowski D. 2022. Data-driven projections suggest large opportunities to improve Europe’s soybean self-sufficiency under climate change. Nature Food, 3, 255-265.

Hu M, Wu W, Yu Q, Tang H, Wen Y, Zhao F. 2022. Spatial-temporal variations in green, blue and gray water footprints of crops: how do socioeconomic drivers influence? Environmental Research Letters, 17, 124024.

Hu Q, Yin H, Friedl M A, You L, Li Z, Tang H, Wu W. 2021. Integrating coarse-resolution images and agricultural statistics to generate sub-pixel crop type maps and reconciled area estimates. Remote Sensing of Environment, 258, 112365.

Huang C, You S, Liu A, Li P, Zhang J, Deng J. 2023. High-Resolution National-Scale Mapping of Paddy Rice Based on Sentinel-1/2 Data. Remote Sensing, 15, 4055.

Huang H, Wang J, Liu C, Liang L, Li C, Gong P. 2020. The migration of training samples towards dynamic global land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 27-36.

Huang Y, Liu Z. 2024. Improving Northeast China’s soybean and maize planting structure through subsidy optimization considering climate change and comparative economic benefit. Land Use Policy, 146, 107319.

Jain A K. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31, 651-666.

Li H, Song X-P, Hansen M C, Becker-Reshef I, Adusei B, Pickering J, Wang L, Wang L, Lin Z, Zalles V, Potapov P, Stehman S V, Justice C. 2023. Development of a 10-m resolution maize and soybean map over China: Matching satellite-based crop classification with sample-based area estimation. Remote Sensing of Environment, 294, 113623.

Li X, Yang Q, Bao L, Li G, Yu J, Chang X, Gao X, Yu L. 2023. Temporal Trends and Future Projections of Accumulated Temperature Changes in China. Agronomy, 13, 1203.

Li X, Yu L, Peng D, Gong P. 2021. A large-scale, long time-series (1984‒2020) of soybean mapping with phenological features: Heilongjiang Province as a test case. International Journal of Remote Sensing, 42, 7332-7356.

Li Z, Shen H, Weng Q, Zhang Y, Dou P, Zhang L. 2022. Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 89-108.

Liang J, Pan S, Xia N, Chen W, Li M. 2024. Threshold response of the agricultural modernization to the open crop straw burning CO2 emission in China's nine major agricultural zones. Agriculture, Ecosystems & Environment, 368, 109005.

Liu S, Zhang P, Marley B, Liu W. 2019. The Factors Affecting Farmers’ Soybean Planting Behavior in Heilongjiang Province, China. Agriculture, 9, 188.

Liu W, Li S, Tao J, Liu X, Yin G, Xia Y, Wang T, Zhang H. 2024. CARM30: China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 using multi-source data. Scientific Data, 11, 356.

Liu W, Zhang H. 2023. Mapping annual 10 m rapeseed extent using multisource data in the Yangtze River Economic Belt of China (2017–2021) on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 117, 103198.

Liu Z, Ying H, Chen M, Bai J, Xue Y, Yin Y, Batchelor W D, Yang Y, Bai Z, Du M, Guo Y, Zhang Q, Cui Z, Zhang F, Dou Z. 2021. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nature Food, 2, 426-433.

Luo Y, Zhang Z, Cao J, Chen Y, Zhang L. 2020. Drivers of planting area and yield shifts for three staple crops across China, 1950-2013. Climate Research, 80, 73-84.

Mafanya M, Tsele P, Zengeya T, Ramoelo A. 2022. An assessment of image classifiers for generating machine-learning training samples for mapping the invasive Campuloclinium macrocephalum (Less.) DC (pompom weed) using DESIS hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 188-200.

Maxwell A E, Warner T A, Fang F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39, 2784-2817.

Mei Q, Zhang Z, Han J, Song J, Dong J, Wu H, Xu J, Tao F. 2024. ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021. Earth System Science Data, 16, 3213-3231.

Pan Y, Yang R, Qiu J, Wang J, Wu J. 2023. Forty-year spatio-temporal dynamics of agricultural climate suitability in China reveal shifted major crop production areas. CATENA, 226, 107073.

Qiu B, Hu X, Yang P, Tang Z, Wu W, Li Z. 2023. A robust approach for large-scale cropping intensity mapping in smallholder farms from vegetation, brownness indices and SAR time series. ISPRS Journal of Photogrammetry and Remote Sensing, 203, 328-344.

Roy D P, Kovalskyy V, Zhang H K, Vermote E F, Yan L, Kumar S S, Egorov A. 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57-70.

Savage S L, Lawrence R L, Squires J R, Holbrook J D, Olson L E, Braaten J D, Cohen W B. 2018. Shifts in Forest Structure in Northwest Montana from 1972 to 2015 Using the Landsat Archive from Multispectral Scanner to Operational Land Imager. Forests, 9, 157.

Shen R, Pan B, Peng Q, Dong J, Chen X, Zhang X, Ye T, Huang J, Yuan W. 2023. High-resolution distribution maps of single-season rice in China from 2017 to 2022. Earth System Science Data, 15, 3203-3222.

Singh P, Kumar R, Sabapathy S N, Bawa A S. 2008. Functional and Edible Uses of Soy Protein Products. Comprehensive Reviews in Food Science and Food Safety, 7, 14-28.

Song X-P, Hansen M C, Potapov P, Adusei B, Pickering J, Adami M, Lima A, Zalles V, Stehman S V, Di Bella C M, Conde M C, Copati E J, Fernandes L B, Hernandez-Serna A, Jantz S M, Pickens A H, Turubanova S, Tyukavina A. 2021. Massive soybean expansion in South America since 2000 and implications for conservation. Nature Sustainability, 4, 784-792.

Tibshirani R, Walther G, Hastie T. 2001. Estimating the Number of Clusters in a Data Set Via the Gap Statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology, 63, 411-423.

Verburg P H, Neumann K, Nol L. 2011. Challenges in using land use and land cover data for global change studies. Global Change Biology, 17, 974-989.

Vogeler J C, Braaten J D, Slesak R A, Falkowski M J. 2018. Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015). Remote Sensing of Environment, 209, 363-374.

Wang J, Zhang Z, Liu Y. 2018. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy, 74, 204-213.

Wang S, Azzari G, Lobell D B. 2019. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sensing of Environment, 222, 303-317.

Wang S, Di Tommaso S, Deines J M, Lobell D B. 2020. Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive. Scientific Data, 7, 307.

Wang W, Wei L. 2021. Impacts of agricultural price support policy on price variability and welfare: Evidence from China's soybean market. Agricultural Economics, 52, 3-17.

Weiss M, Jacob F, Duveiller G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402.

Whitcraft A K, Vermote E F, Becker-Reshef I, Justice C O. 2015. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sensing of Environment, 156, 438-447.

Wu F, Geng Y, Zhang Y, Ji C, Chen Y, Sun L, Xie W, Ali T, Fujita T. 2020. Assessing sustainability of soybean supply in China: Evidence from provincial production and trade data. Journal of Cleaner Production, 244, 119006.

Wu S, Ding S. 2021. Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector. Energy Economics, 99, 105313.

Xiao G, Huang J, Song J, Li X, Du K, Huang H, Su W, Miao S. 2024. A novel soybean mapping index within the global optimal time window. ISPRS Journal of Photogrammetry and Remote Sensing, 217, 120-133.

Xiao X, Zhang J, Liu Y. 2024. Impacts of Crop Type and Climate Changes on Agricultural Water Dynamics in Northeast China from 2000 to 2020. Remote Sensing, 16, 1007.

Xin F, Xiao X, Dong J, Zhang G, Zhang Y, Wu X, Li X, Zou Z, Ma J, Du G, Doughty R B, Zhao B, Li B. 2020. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Science of the Total Environment, 711, 135183.

Xu S, Wang J, Altansukh O, Chuluun T. 2024. Spatiotemporal evolution and driving mechanisms of desertification on the Mongolian Plateau. Science of the Total Environment, 941, 173566.

Xuan F, Dong Y, Li J, Li X, Su W, Huang X, Huang J, Xie Z, Li Z, Liu H, Tao W, Wen Y, Zhang Y. 2023. Mapping crop type in Northeast China during 2013–2021 using automatic sampling and tile-based image classification. International Journal of Applied Earth Observation and Geoinformation, 117, 103178.

Yang G, Yu W, Yao X, Zheng H, Cao Q, Zhu Y, Cao W, Cheng T. 2021. AGTOC: A novel approach to winter wheat mapping by automatic generation of training samples and one-class classification on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 102, 102446.

Yang J, Huang X. 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 13, 3907-3925.

Yang M, Guo B, Wang J. 2024. A novel and robust method for large-scale single-season rice mapping based on phenology and statistical data. ISPRS Journal of Photogrammetry and Remote Sensing, 213, 14-32.

Yin X, Olesen J E, Wang M, Öztürk I, Zhang H, Chen F. 2016. Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China. European Journal of Agronomy, 78, 60-72.

You N, Dong J. 2020. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 109-123.

You N, Dong J, Huang J, Du G, Zhang G, He Y, Yang T, Di Y, Xiao X. 2021. The 10-m crop type maps in Northeast China during 2017–2019. Scientific Data, 8, 41.

Zaaboul F, Zhao Q, Xu Y, Liu Y. 2022. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocolloids, 124, 107296.

Zhang C, Zhang H, Tian S. 2023. Phenology-assisted supervised paddy rice mapping with the Landsat imagery on Google Earth Engine: Experiments in Heilongjiang Province of China from 1990 to 2020. Computers and Electronics in Agriculture, 212, 108105.

Zhang D, Pan Y, Zhang J, Hu T, Zhao J, Li N, Chen Q. 2020. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sensing of Environment, 247, 111912.

Zhang H, Liu W, Zhang L. 2022. Seamless and automated rapeseed mapping for large cloudy regions using time-series optical satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 45-62.

Zhang H, Lou Z, Peng D, Zhang B, Luo W, Huang J, Zhang X, Yu L, Wang F, Huang L, Liu G, Gao S, Hu J, Yang S, Cheng E. 2024. Mapping annual 10-m soybean cropland with spatiotemporal sample migration. Scientific Data, 11, 439.

Zhang Y, Qi Y, Shen Y, Wang H, Pan X. 2019. Mapping the agricultural land use of the North China Plain in 2002 and 2012. Journal of Geographical Sciences, 29, 909-921.

Zhao H, Chang J, Havlík P, van Dijk M, Valin H, Janssens C, Ma L, Bai Z, Herrero M, Smith P, Obersteiner M. 2021. China’s future food demand and its implications for trade and environment. Nature Sustainability, 4, 1042-1051.

[1] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2492-2510.
[2] Berhane S. Gebregziabher, Shengrui Zhang, Jing Li, Bin Li, Junming Sun. Identification of genomic regions and candidate genes underlying carotenoid accumulation in soybean using next-generation sequen-cing based bulk segregant analysis[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2063-2079.
[3] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[4] Dong An, Xingfa Lai, Tianfu Han, Jean Marie Vianney Nsigayehe, Guixin Li, Yuying Shen. Crossing latitude introduction delayed flowering and facilitated dry matter accumulation of soybean as a forage crop[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1436-1447.
[5] Jia Jia, Huan Wang, Ximeng Yang, Bo Chen, Ruqian Wei, Qibin Ma, Yanbo Cheng, Hai Nian. Identification of long InDels through whole genome resequencing to fine map qIF05-1 for seed isoflavone content in soybean (Glycine max L. Merr.) [J]. >Journal of Integrative Agriculture, 2025, 24(1): 85-100.
[6] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[7] Zhimin Wu, Xiaozeng Han, Xu Chen, Xinchun Lu, Jun Yan, Wei Wang, Wenxiu Zou, Lei Yan.

Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2065-2082.

[8] Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1910-1928.

[9] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[10] Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 3966-3982.
[11] Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4216-4236.
[12] Jie Li, Shanjie Han, Ruhang Xu, Xuchen Zhang, Junquan Liang, Mengxin Wang, Baoyu Han. Insight into the effect of geographic location and intercropping on contamination characteristics and exposure risk of phthalate esters (PAEs) in tea plantation soils[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3896-3911.
[13] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[14] ZHAI Qian-hang, PAN Ze-qun, ZHANG Cheng, YU Hui-lin, ZHANG Meng, GU Xue-hu, ZHANG Xiang-hui, PAN Hong-yu, ZHANG Hao. Colonization by Klebsiella variicola FH-1 stimulates soybean growth and alleviates the stress of Sclerotinia sclerotiorum[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2729-2745.
[15] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
No Suggested Reading articles found!