Adjemian M K, Smith A, He W. 2021. Estimating the market effect of a trade war: The case of soybean tariffs. Food Policy, 105, 102152.
Ashourloo D, Nematollahi H, Huete A, Aghighi H, Azadbakht M, Shahrabi H S, Goodarzdashti S. 2022. A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images. Remote Sensing of Environment, 280, 113206.
Barboza Martignone G M, Ghosh B, Papadas D, Behrendt K. 2024. The rise of Soybean in international commodity markets: A quantile investigation. Heliyon, 10, e34669.
Belgiu M, Bijker W, Csillik O, Stein A. 2021. Phenology-based sample generation for supervised crop type classification. International Journal of Applied Earth Observation and Geoinformation, 95, 102264.
Cao X, Zeng W, Wu M, Li T, Chen S, Wang W. 2021. Water resources efficiency assessment in crop production from the perspective of water footprint. Journal of Cleaner Production, 309, 127371.
Cavalett O, Ortega E. 2010. Integrated environmental assessment of biodiesel production from soybean in Brazil. Journal of Cleaner Production, 18, 55-70.
Chai L, Liu A, Li X, Guo Z, He W, Huang J, Bai T, Liu J. 2024. Telecoupled impacts of the Russia–Ukraine war on global cropland expansion and biodiversity. Nature Sustainability, 7, 432-441.
Chen H, Li H, Liu Z, Zhang C, Zhang S, Atkinson P M. 2023. A novel Greenness and Water Content Composite Index (GWCCI) for soybean mapping from single remotely sensed multispectral images. Remote Sensing of Environment, 295, 113679.
Chen W, Zhang B, Kong X, Wen L, Liao Y, Kong L. 2022. Soybean Production and Spatial Agglomeration in China from 1949 to 2019. Land, 11, 734.
Dennison P E, Halligan K Q, Roberts D A. 2004. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sensing of Environment, 93, 359-367.
Dong J, Fu Y, Wang J, Tian H, Fu S, Niu Z, Han W, Zheng Y, Huang J, Yuan W. 2020. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth System Science Data, 12, 3081-3095.
Dong J, Xiao X, Kou W, Qin Y, Zhang G, Li L, Jin C, Zhou Y, Wang J, Biradar C, Liu J, Moore B. 2015. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sensing of Environment, 160, 99-113.
Gao Z, Guo D, Ryu D, Western A W. 2023. Training sample selection for robust multi-year within-season crop classification using machine learning. Computers and Electronics in Agriculture, 210, 107927.
Gocic M, Trajkovic S. 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172-182.
Gong B. 2018. Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015. Journal of Development Economics, 132, 18-31.
Guilpart N, Iizumi T, Makowski D. 2022. Data-driven projections suggest large opportunities to improve Europe’s soybean self-sufficiency under climate change. Nature Food, 3, 255-265.
Hu M, Wu W, Yu Q, Tang H, Wen Y, Zhao F. 2022. Spatial-temporal variations in green, blue and gray water footprints of crops: how do socioeconomic drivers influence? Environmental Research Letters, 17, 124024.
Hu Q, Yin H, Friedl M A, You L, Li Z, Tang H, Wu W. 2021. Integrating coarse-resolution images and agricultural statistics to generate sub-pixel crop type maps and reconciled area estimates. Remote Sensing of Environment, 258, 112365.
Huang C, You S, Liu A, Li P, Zhang J, Deng J. 2023. High-Resolution National-Scale Mapping of Paddy Rice Based on Sentinel-1/2 Data. Remote Sensing, 15, 4055.
Huang H, Wang J, Liu C, Liang L, Li C, Gong P. 2020. The migration of training samples towards dynamic global land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 27-36.
Huang Y, Liu Z. 2024. Improving Northeast China’s soybean and maize planting structure through subsidy optimization considering climate change and comparative economic benefit. Land Use Policy, 146, 107319.
Jain A K. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31, 651-666.
Li H, Song X-P, Hansen M C, Becker-Reshef I, Adusei B, Pickering J, Wang L, Wang L, Lin Z, Zalles V, Potapov P, Stehman S V, Justice C. 2023. Development of a 10-m resolution maize and soybean map over China: Matching satellite-based crop classification with sample-based area estimation. Remote Sensing of Environment, 294, 113623.
Li X, Yang Q, Bao L, Li G, Yu J, Chang X, Gao X, Yu L. 2023. Temporal Trends and Future Projections of Accumulated Temperature Changes in China. Agronomy, 13, 1203.
Li X, Yu L, Peng D, Gong P. 2021. A large-scale, long time-series (1984‒2020) of soybean mapping with phenological features: Heilongjiang Province as a test case. International Journal of Remote Sensing, 42, 7332-7356.
Li Z, Shen H, Weng Q, Zhang Y, Dou P, Zhang L. 2022. Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 89-108.
Liang J, Pan S, Xia N, Chen W, Li M. 2024. Threshold response of the agricultural modernization to the open crop straw burning CO2 emission in China's nine major agricultural zones. Agriculture, Ecosystems & Environment, 368, 109005.
Liu S, Zhang P, Marley B, Liu W. 2019. The Factors Affecting Farmers’ Soybean Planting Behavior in Heilongjiang Province, China. Agriculture, 9, 188.
Liu W, Li S, Tao J, Liu X, Yin G, Xia Y, Wang T, Zhang H. 2024. CARM30: China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 using multi-source data. Scientific Data, 11, 356.
Liu W, Zhang H. 2023. Mapping annual 10 m rapeseed extent using multisource data in the Yangtze River Economic Belt of China (2017–2021) on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 117, 103198.
Liu Z, Ying H, Chen M, Bai J, Xue Y, Yin Y, Batchelor W D, Yang Y, Bai Z, Du M, Guo Y, Zhang Q, Cui Z, Zhang F, Dou Z. 2021. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nature Food, 2, 426-433.
Luo Y, Zhang Z, Cao J, Chen Y, Zhang L. 2020. Drivers of planting area and yield shifts for three staple crops across China, 1950-2013. Climate Research, 80, 73-84.
Mafanya M, Tsele P, Zengeya T, Ramoelo A. 2022. An assessment of image classifiers for generating machine-learning training samples for mapping the invasive Campuloclinium macrocephalum (Less.) DC (pompom weed) using DESIS hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 188-200.
Maxwell A E, Warner T A, Fang F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. International Journal of Remote Sensing, 39, 2784-2817.
Mei Q, Zhang Z, Han J, Song J, Dong J, Wu H, Xu J, Tao F. 2024. ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021. Earth System Science Data, 16, 3213-3231.
Pan Y, Yang R, Qiu J, Wang J, Wu J. 2023. Forty-year spatio-temporal dynamics of agricultural climate suitability in China reveal shifted major crop production areas. CATENA, 226, 107073.
Qiu B, Hu X, Yang P, Tang Z, Wu W, Li Z. 2023. A robust approach for large-scale cropping intensity mapping in smallholder farms from vegetation, brownness indices and SAR time series. ISPRS Journal of Photogrammetry and Remote Sensing, 203, 328-344.
Roy D P, Kovalskyy V, Zhang H K, Vermote E F, Yan L, Kumar S S, Egorov A. 2016. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57-70.
Savage S L, Lawrence R L, Squires J R, Holbrook J D, Olson L E, Braaten J D, Cohen W B. 2018. Shifts in Forest Structure in Northwest Montana from 1972 to 2015 Using the Landsat Archive from Multispectral Scanner to Operational Land Imager. Forests, 9, 157.
Shen R, Pan B, Peng Q, Dong J, Chen X, Zhang X, Ye T, Huang J, Yuan W. 2023. High-resolution distribution maps of single-season rice in China from 2017 to 2022. Earth System Science Data, 15, 3203-3222.
Singh P, Kumar R, Sabapathy S N, Bawa A S. 2008. Functional and Edible Uses of Soy Protein Products. Comprehensive Reviews in Food Science and Food Safety, 7, 14-28.
Song X-P, Hansen M C, Potapov P, Adusei B, Pickering J, Adami M, Lima A, Zalles V, Stehman S V, Di Bella C M, Conde M C, Copati E J, Fernandes L B, Hernandez-Serna A, Jantz S M, Pickens A H, Turubanova S, Tyukavina A. 2021. Massive soybean expansion in South America since 2000 and implications for conservation. Nature Sustainability, 4, 784-792.
Tibshirani R, Walther G, Hastie T. 2001. Estimating the Number of Clusters in a Data Set Via the Gap Statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology, 63, 411-423.
Verburg P H, Neumann K, Nol L. 2011. Challenges in using land use and land cover data for global change studies. Global Change Biology, 17, 974-989.
Vogeler J C, Braaten J D, Slesak R A, Falkowski M J. 2018. Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015). Remote Sensing of Environment, 209, 363-374.
Wang J, Zhang Z, Liu Y. 2018. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy, 74, 204-213.
Wang S, Azzari G, Lobell D B. 2019. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sensing of Environment, 222, 303-317.
Wang S, Di Tommaso S, Deines J M, Lobell D B. 2020. Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive. Scientific Data, 7, 307.
Wang W, Wei L. 2021. Impacts of agricultural price support policy on price variability and welfare: Evidence from China's soybean market. Agricultural Economics, 52, 3-17.
Weiss M, Jacob F, Duveiller G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402.
Whitcraft A K, Vermote E F, Becker-Reshef I, Justice C O. 2015. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sensing of Environment, 156, 438-447.
Wu F, Geng Y, Zhang Y, Ji C, Chen Y, Sun L, Xie W, Ali T, Fujita T. 2020. Assessing sustainability of soybean supply in China: Evidence from provincial production and trade data. Journal of Cleaner Production, 244, 119006.
Wu S, Ding S. 2021. Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector. Energy Economics, 99, 105313.
Xiao G, Huang J, Song J, Li X, Du K, Huang H, Su W, Miao S. 2024. A novel soybean mapping index within the global optimal time window. ISPRS Journal of Photogrammetry and Remote Sensing, 217, 120-133.
Xiao X, Zhang J, Liu Y. 2024. Impacts of Crop Type and Climate Changes on Agricultural Water Dynamics in Northeast China from 2000 to 2020. Remote Sensing, 16, 1007.
Xin F, Xiao X, Dong J, Zhang G, Zhang Y, Wu X, Li X, Zou Z, Ma J, Du G, Doughty R B, Zhao B, Li B. 2020. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Science of the Total Environment, 711, 135183.
Xu S, Wang J, Altansukh O, Chuluun T. 2024. Spatiotemporal evolution and driving mechanisms of desertification on the Mongolian Plateau. Science of the Total Environment, 941, 173566.
Xuan F, Dong Y, Li J, Li X, Su W, Huang X, Huang J, Xie Z, Li Z, Liu H, Tao W, Wen Y, Zhang Y. 2023. Mapping crop type in Northeast China during 2013–2021 using automatic sampling and tile-based image classification. International Journal of Applied Earth Observation and Geoinformation, 117, 103178.
Yang G, Yu W, Yao X, Zheng H, Cao Q, Zhu Y, Cao W, Cheng T. 2021. AGTOC: A novel approach to winter wheat mapping by automatic generation of training samples and one-class classification on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 102, 102446.
Yang J, Huang X. 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 13, 3907-3925.
Yang M, Guo B, Wang J. 2024. A novel and robust method for large-scale single-season rice mapping based on phenology and statistical data. ISPRS Journal of Photogrammetry and Remote Sensing, 213, 14-32.
Yin X, Olesen J E, Wang M, Öztürk I, Zhang H, Chen F. 2016. Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China. European Journal of Agronomy, 78, 60-72.
You N, Dong J. 2020. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 109-123.
You N, Dong J, Huang J, Du G, Zhang G, He Y, Yang T, Di Y, Xiao X. 2021. The 10-m crop type maps in Northeast China during 2017–2019. Scientific Data, 8, 41.
Zaaboul F, Zhao Q, Xu Y, Liu Y. 2022. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocolloids, 124, 107296.
Zhang C, Zhang H, Tian S. 2023. Phenology-assisted supervised paddy rice mapping with the Landsat imagery on Google Earth Engine: Experiments in Heilongjiang Province of China from 1990 to 2020. Computers and Electronics in Agriculture, 212, 108105.
Zhang D, Pan Y, Zhang J, Hu T, Zhao J, Li N, Chen Q. 2020. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sensing of Environment, 247, 111912.
Zhang H, Liu W, Zhang L. 2022. Seamless and automated rapeseed mapping for large cloudy regions using time-series optical satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 45-62.
Zhang H, Lou Z, Peng D, Zhang B, Luo W, Huang J, Zhang X, Yu L, Wang F, Huang L, Liu G, Gao S, Hu J, Yang S, Cheng E. 2024. Mapping annual 10-m soybean cropland with spatiotemporal sample migration. Scientific Data, 11, 439.
Zhang Y, Qi Y, Shen Y, Wang H, Pan X. 2019. Mapping the agricultural land use of the North China Plain in 2002 and 2012. Journal of Geographical Sciences, 29, 909-921.
Zhao H, Chang J, Havlík P, van Dijk M, Valin H, Janssens C, Ma L, Bai Z, Herrero M, Smith P, Obersteiner M. 2021. China’s future food demand and its implications for trade and environment. Nature Sustainability, 4, 1042-1051.
|