Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Monitoring agricultural arthropod diversity by eDNA metabarcoding from plant cleaning fluid

Xiaoxiao Song1, Cong Dang1, 2, Ran Li1, Fang Wang1, Hongwei Yao1, David W. Stanley3, Gongyin Ye1#

1 State Key Laboratory of Rice Biology and BreedingMinistry of Agricultural and Rural Affairs/Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China

2 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China

3 Biological Control of Insects Research Laboratory USDA/Agricultural Research Service, Columbia MO 65203, USA

 Highlights 

Ÿ The COI primer (mlCOIintF/jgHCO2198R) detected more rice field arthropod species compared to 16S and 18S primers in eDNA metabarcoding.

Ÿ eDNA collected from rice plant cleaning fluid (RPCF) identified 15% more arthropod species than vacuum-suction sampling.

Ÿ RPCF revealed comparable alpha diversity and taxonomic composition of arthropods between Bt- and non-Bt rice fields, demonstrating its potential for monitoring agricultural arthropod communities.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

节肢动物在作物生产中扮演着传粉者、捕食者和害虫的重要角色。因此,了解节肢动物的生物多样性有助于了解农业生态系统的健康、功能和服务。传统调查方法耗时长、成本高,而且依赖于日益缺失的分类学专业知识,从而可能限制其在农业中的应用。环境 DNAeDNA)指对不同环境样本进行宏条形码测序,从而获得有关物种组成的宝贵信息,而且该方法可以高效、非侵入性地取样。然而,很少有研究在稻田中使用这种方法。本研究使用不同的条形码引物研究了四种稻田样品,包括水稻植株清洗液(RPCF)、水稻花粉、稻田土层和稻田水层,以确定监测稻田节肢动物多样性最合适的样品。另外,我们在转BtBacillus Thuringiensis基因和非转Bt基因稻田中应用了这种方法,以研究其在生物多样性监测方面的潜力。结果表明,COI基因的引物(mlCOIintF/jgHCO2198R)扩增效果最好,可以注释到的稻田节肢动物种类最多。与吸虫器取样相比,水稻植株清洗液作为eDNA样品时鉴定到的节肢动物种类增加了15%。在水稻抽穗期水稻花粉进行eDNA宏条形码测序也检测到了大量丰富的节肢动物种类转Bt基因和非转Bt基因稻田的节肢动物α多样性和群落组成没有差异,这与传统调查方法的结果一致。我们的研究结果表明,对植物清洗液进行eDNA宏条形码分析有可能改善农业节肢动物群落的监测现状从而优化农业生产



Abstract  

Arthropods serve essential roles in crop production as pollinators, predators, and pests. Understanding arthropod biodiversity is crucial for assessing agroecosystem health, functions, and services. Traditional survey methods are labor-intensive, costly, and rely on diminishing taxonomic expertise, limiting their agricultural applications. Environmental DNA (eDNA) metabarcoding of diverse samples provides comprehensive species composition data through efficient and non-invasive sampling. However, this method remains underutilized in rice field studies. This research examined four sample substrates - RPCF, rice pollen, soil, and water - using various barcoding primers to identify optimal substrates for monitoring rice paddy arthropod diversity. The method was implemented in Bt- (Bacillus thuringiensis Berliner) rice and non-Bt rice fields to evaluate its biomonitoring potential. Results indicate that the COI primer (mlCOIintF/jgHCO2198R) identified the highest number of rice field arthropod species. The eDNA collected from RPCF detected 15% more arthropod species compared to vacuum sampling of whole arthropods. Rice pollen collection during the heading stage also revealed considerable arthropod diversity. Alpha diversity and taxonomic composition remained consistent between Bt- and non-Bt rice fields, aligning with traditional survey findings. These results suggest that eDNA metabarcoding of plant cleaning fluid offers an effective approach for monitoring agricultural arthropod communities, contributing to agricultural production optimization.

Keywords:  arthropod diversity       environmental DNA       agroecosystem       Bt rice  
Online: 14 July 2025  
Fund: 

This work was supported by the Biological Breeding-Major Projects of China (2023ZD04062), the China Postdoctoral Science Foundation (2021M702880), and the Fundamental Research Funds for the Central Universities, China (226-2024-00070).

Cite this article: 

Xiaoxiao Song, Cong Dang, Ran Li, Fang Wang, Hongwei Yao, David W. Stanley, Gongyin Ye. 2025. Monitoring agricultural arthropod diversity by eDNA metabarcoding from plant cleaning fluid. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.014

Abarenkov K, Somervuo P, Nilsson R H, Kirk P M, Huotari T, Abrego N, Ovaskainen O. 2018. Protax-fungi: A web-based tool for probabilistic taxonomic placement of fungal internal transcribed spacer sequences. The New Phytologist, 220, 517–525.

Allen M C, Nielsen A L, Peterson D L, Lockwood J L. 2021. Terrestrial eDNA survey outperforms conventional approach for detecting an invasive pest insect within an agricultural ecosystem. Environmental DNA, 3, 1102–1112.

Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

Anderson M J. 2017. Permutational multivariate analysis of variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels J L, eds., Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Hoboken.

Andrews S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Institute. [2020-12-22]. https://www.bioinformatics.babraham.ac.uk/projects/fastqc

Arribas P, Andújar C, Salces-Castellano A, Emerson B C, Vogler A P. 2021. The limited spatial scale of dispersal in soil arthropods revealed with whole-community haplotype-level metabarcoding. Molecular Ecology, 30, 48–61.

Bell K L, Turo K J, Lowe A, Nota K, Keller A, Encinas-Viso F, Parducci L, Richardson R T, Leggett R M, Brosi B J, Burgess K S, Suyama Y, De Vere N. 2022. Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding. Molecular Ecology, 32, 6345–6362.

Berry O, Jarman S, Bissett A, Hope M, Paeper C, Bessey C, Schwartz M K, Hale J, Bunce M. 2021. Making environmental DNA (eDNA) biodiversity records globally accessible. Environmental DNA, 3, 699–705.

Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E. 2015. obitools: A unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16, 176–182.

Brown B V. 2021. Sampling methods for adult flies (Diptera). In: Santos J C, Fernandes G W, eds., Measuring Arthropod Biodiversity. Springer, Cham. pp. 187–204.

Brown E A, Chain F J J, Zhan A, Macisaac H J, Cristescu M E. 2016. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Diversity and Distributions, 22, 1045–1059.

Carino F O, Kenmore P E, Dyck V A. 1979. The farmcop suction sampler for hoppers and predators in flooded rice field. International Rice Research Newsletter, 4, 21–22.

Chen H, Zhang G, Zhang Q, Lin Y. 2008. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae). Journal of Economic Entomology, 101, 182–189.

Cheng Z, Li Q, Deng J, Liu Q, Huang X. 2023. The devil is in the details: Problems in DNA barcoding practices indicated by systematic evaluation of insect barcodes. Frontiers in Ecology and Evolution, 11, 1149839.

Dang C, Lu Z, Wang L, Chang X, Wang F, Yao H, Peng Y, Stanley D, Ye G. 2017. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China. Plant Biotechnology Journal, 15, 1047–1053.

Dirzo R, Young H S, Galetti M, Ceballos G, Isaac N J B, Collen B. 2014. Defaunation in the Anthropocene. Science, 345, 401–406.

Djurhuus A, Closek C J, Kelly R P, Pitz K J, Michisaki R P, Starks H A, Walz K R, Andruszkiewicz E A, Olesin E, Hubbard K, Montes E, Otis D, Muller-Karger F E, Chavez F P, Boehm A B, Breitbart M. 2020. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nature Communications, 11, 254.

Dunn J C, Stockdale J E, Moorhouse-Gann R J, Mccubbin A, Hipperson H, Morris A J, Grice P V, Symondson W O C. 2018. The decline of the Turtle Dove: Dietary associations with body condition and competition with other columbids analysed using high-throughput sequencing. Molecular Ecology, 27, 3386–3407.

Edgar R C. 2016. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv, doi: 10.1101/081257.

Elbrecht V, Taberlet P, Dejean T, Valentini A, Usseglio-Polatera P, Beisel J N, Coissac E, Boyer F, Leese F. 2016. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ, 4, e1966.

Ficetola G F, Taberlet P, Coissac E. 2016. How to limit false positives in environmental DNA and metabarcoding? Molecular Ecology Resources, 16, 604–607.

Finn C, Grattarola F, Pincheira-Donoso D. 2023. More losers than winners: Investigating Anthropocene defaunation through the diversity of population trends. Biological Reviews of the Cambridge Philosophical Society, 98, 1732–1748.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.

Gamonal Gomez N, Sørensen D H, Chua P Y S, Sigsgaard L. 2023. Assessing flower-visiting arthropod diversity in apple orchards through metabarcoding of environmental DNA from flowers and visual census. Environmental DNA, 5, 117–131.

Gervais A, Chagnon M, Fournier V. 2018. Diversity and pollen loads of flower flies (Diptera: Syrphidae) in cranberry crops. Annals of the Entomological Society of America, 111, 326–334.

Gurr G M, Lu Z, Zheng X, Xu H, Zhu P, Chen G, Yao X, Cheng J, Zhu Z, Catindig J L, Villareal S, Van Chien H, Cuong L Q, Channoo C, Chengwattana N, Lan L P, Hai L H, Chaiwong J, Nicol H I, Perovic D J, et al. 2016. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nature Plants, 2, 16014.

Van Der Heyde M, Bunce M, Wardell-Johnson G, Fernandes K, White N E, Nevill P. 2020. Testing multiple substrates for terrestrial biodiversity monitoring using environmental DNA metabarcoding. Molecular Ecology Resources, 20, 732–745.

Johnson M D, Katz A D, Davis M A, Tetzlaff S, Edlund D, Tomczyk S, Molano-Flores B, Wilder T, Sperry J H. 2023. Environmental DNA metabarcoding from flowers reveals arthropod pollinators, plant pests, parasites, and potential predator–prey interactions while revealing more arthropod diversity than camera traps. Environmental DNA, 5, 551–569.

Kestel J H, Bateman P W, Field D L, White N E, Lines R, Nevill P. 2023. eDNA metabarcoding of avocado flowers: ‘Hass’ it got potential to survey arthropods in food production systems? Molecular Ecology Resources, 23, 1540–1555.

Kestel J H, Field D L, Bateman P W, White N E, Allentoft M E, Hopkins A J M, Gibberd M, Nevill P. 2022. Applications of environmental DNA (eDNA) in agricultural systems: Current uses, limitations and future prospects. Science of the Total Environment, 847, 157556.

Leray M, Yang J Y, Meyer C P, Mills S C, Agudelo N, Ranwez V, Boehm J T, Machida R J. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10, 34.

Letourneau D K, Armbrecht I, Rivera B S, Lerma J M, Carmona E J, Daza M C, Escobar S, Galindo V, Gutiérrez C, López S D, Mejía J L, Rangel A M A, Rangel J H, Rivera L, Saavedra C A, Torres A M, Trujillo A R. 2011. Does plant diversity benefit agroecosystems? A synthetic review. Ecological Applications, 21, 9–21.

Li F, Zhang Y, Altermatt F, Zhang X, Cai Y, Yang Z. 2022. Gap analysis for DNA-based biomonitoring of aquatic ecosystems in China. Ecological Indicators, 137, 108732.

Li Y, Zhang Q, Liu Q, Meissle M, Yang Y, Wang Y, Hua H, Chen X, Peng Y, Romeis J. 2017. Bt rice in China - focusing the nontarget risk assessment. Plant Biotechinology Journal, 15, 1340–1345.

Lu Z, Dang C, Han N, Shen Z, Peng Y, Stanley D, Ye G. 2016. The new transgenic cry1Ab/vip3H rice poses no unexpected ecological risks to arthropod communities in rice agroecosystems. Environmental Entomology, 45, 518–525.

Ma W, Lin L, Peng Q. 2023. Origin, selection, and succession of coastal intertidal zone-derived bacterial communities associated with the degradation of various lignocellulose substrates. Microbial Ecology, 86, 1589–1603.

Macher J N, Macher T H, Leese F. 2017. Combining NCBI and BOLD databases for OTU assignment in metabarcoding and metagenomic datasets: The BOLD_NCBI _Merger. Metabarcoding and Metagenomics, 1, e22262.

McCravy K W. 2018. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects, 9, 170.

Meiklejohn K A, Damaso N, Robertson J M. 2019. Assessment of BOLD and GenBank - Their accuracy and reliability for the identification of biological materials. PLoS ONE, 14, e0217084.

Mousavi-Derazmahalleh M, Stott A, Lines R, Peverley G, Nester G, Simpson T, Zawierta M, De La Pierre M, Bunce M, Christophersen C T. 2021. eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA sequences exploiting Nextflow and Singularity. Molecular Ecology Resources, 21, 1697–1704.

Newton J P, Bateman P W, Heydenrych M J, Kestel J H, Dixon K W, Prendergast K S, White N E, Nevill P. 2023. Monitoring the birds and the bees: Environmental DNA metabarcoding of flowers detects plant–animal interactions. Environmental DNA, 5, 488–502.

Oksanen J, Simpson G, Blanchet F G, Kindt R, Legendre P, Minchin P, Hara R, Solymos P, Stevens H, Szöcs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Cáceres M, Durand S, Weedon J. 2022. Vegan: Community ecology package. R package version 2.6-4. [2024-09-27]. https://CRAN.R-project.org/package=vegan

Orr M C, Ferrari R R, Hughes A C, Chen J, Ascher J S, Yan Y H, Williams P H, Zhou X, Bai M, Rudoy A, Zhang F, Ma K P, Zhu C D. 2021. Taxonomy must engage with new technologies and evolve to face future challenges. Nature Ecology & Evolution, 5, 3–4.

Pentinsaari M, Blagoev G A, Hogg I D, Levesque-Beaudin V, Perez K, Sobel C N, Vandenbrink B, Borisenko A. 2020. A DNA barcoding survey of an arctic arthropod community: Implications for future monitoring. Insects, 11, 46.

Porter T M, Hajibabaei M. 2018. Automated high throughput animal CO1 metabarcode classification. Scientific Reports, 8, 4226.

Prado S G, Ngo H T, Florez J A, Collazo J A. 2017. Sampling bees in tropical forests and agroecosystems: A review. Journal of Insect Conservation, 21, 753–770.

R Core Team. 2023. R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. [2023-04-19]. https://www.R-project.org/

Reilly J R, Artz D R, Biddinger D, Bobiwash K, Boyle N K, Brittain C, Brokaw J, Campbell J W, Daniels J, Elle E, Ellis J D, Fleischer S J, Gibbs J, Gillespie R L, Gundersen K B, Gut L, Hoffman G, Joshi N, Lundin O, Mason K, et al. 2020. Crop production in the USA is frequently limited by a lack of pollinators. Proceedings of the Royal Society B (Biological Sciences), 287, 20200922.

Saccò M, Guzik M T, Van Der Heyde M, Nevill P, Cooper S J B, Austin A D, Coates P J, Allentoft M E, White N E. 2022. eDNA in subterranean ecosystems: Applications, technical aspects, and future prospects. Science of the Total Environment, 820, 153223.

Senapathi D, Fründ J, Albrecht M, Garratt M P D, Kleijn D, Pickles B J, Potts S G, An J, Andersson G K S, Bänsch S, Basu P, Benjamin F, Bezerra A D M, Bhattacharya R, Biesmeijer J C, Blaauw B, Blitzer E J, Brittain C A, Carvalheiro L G, Cariveau D P, et al. 2021. Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B (Biological Sciences), 288, 20210212.

Smith D P, Peay K G. 2014. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE, 9, e90234.

Smith M R, Singh G M, Mozaffarian D, Myers S S. 2015. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. The Lancet, 386, 1964–1972.

Spafford R D, Lortie C J. 2013. Sweeping beauty: Is grassland arthropod community composition effectively estimated by sweep netting? Ecology and Evolution, 3, 3347–3358.

Strickler K M, Fremier A K, Goldberg C S. 2015. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85–92.

Thomsen P F, Sigsgaard E E. 2019. Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods. Ecology and Evolution, 9, 1665–1679.

Thomsen P F, Willerslev E. 2015. Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4–18.

Tréguier A, Paillisson J M, Dejean T, Valentini A, Schlaepfer M A, Roussel J M. 2014. Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. Journal of Applied Ecology, 51, 871–879.

Valentin R E, Fonseca D M, Gable S, Kyle K E, Hamilton G C, Nielsen A L, Lockwood J L. 2020. Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects. Molecular Ecology Resources, 20, 746–755.

Valentin R E, Kyle K E, Allen M C, Welbourne D J, Lockwood J L. 2021. The state, transport, and fate of aboveground terrestrial arthropod eDNA. Environmental DNA, 3, 1081–1092.

Valentin R E, Maslo B, Lockwood J L, Pote J, Fonseca D M. 2016. Real-time PCR assay to detect brown marmorated stink bug, Halyomorpha halys (Stål), in environmental DNA. Pest Management Science, 72, 1854–1861.

Visser F, Merten V J, Bayer T, Oudejans M G, De Jonge D S W, Puebla O, Reusch T B H, Fuss J, Hoving H J T. 2021. Deep-sea predator niche segregation revealed by combined cetacean biologging and eDNA analysis of cephalopod prey. Science Advances, 7, eabf5908.

Vorholt J A. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology, 10, 828-840.

Wang Y, Chen J, Xiao D, Ma F, Hua H. 2016. Assessing the efficacy of different sampling methods for arthropods in rice field. Journal of Environmental Entomology, 38, 1090–1098. (in Chinese)

Wilson J J, Brandon-Mong G J, Gan H M, Sing K W. 2019. High-throughput terrestrial biodiversity assessments: Mitochondrial metabarcoding, metagenomics or metatranscriptomics? Mitochondrial DNA Part A, 30, 60–67.

Yamamoto S, Masuda R, Sato Y, Sado T, Araki H, Kondoh M, Minamoto T, Miya M. 2017. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports, 7, 40368.

Zafeiropoulos H, Viet H Q, Vasileiadou K, Potirakis A, Arvanitidis C, Topalis P, Pavloudi C, Pafilis E. 2020. PEMA: A flexible Pipeline for Environmental DNA Metabarcoding Analysis of the 16S/18S ribosomal RNA, ITS, and COI marker genes. GigaScience, 9, giaa022.

Zeale M R K, Butlin R K, Barker G L A, Lees D C, Jones G. 2011. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11, 236–244.

Zenker M M, Specht A, Fonseca V G. 2020. Assessing insect biodiversity with automatic light traps in Brazil: Pearls and pitfalls of metabarcoding samples in preservative ethanol. Ecology and Evolution, 10, 2352–2366.

Zhu H, Zou X, Wang D, Wan S, Wang L, Guo J. 2015. Responses of community-level plant-insect interactions to climate warming in a meadow steppe. Scientific Reports, 5, 18654.

Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, Gaucher P, Gielly L, Giguet-Covex C, Iribar A, Réjou-Méchain M, Rayé G, Rioux D, Schilling V, Tymen B, Viers J, Zouiten C, Thuiller W, Coissac E, Chave J. 2019. Body size determines soil community assembly in a tropical forest. Molecular Ecology, 28, 528–543.

[1] Siriyaporn Chanapanchai, Wahdan Fitriya, Ida Bagus Made Artadana, Kanyaratt Supaibulwatana. Important role and benefits of Azolla plant in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[2] Xiaolan Yu, Fangmin Zhang, Yanqiu Fang, Xiaohan Zhao, Kaidi Zhang, Yanyu Lu. Assessment of CH4 flux and its influencing drivers in the rice–wheat agroecosystem of the Huai River Basin, China[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4203-4215.
[3] ZHANG Zhi-jian, WANG Xian-zhe, LIANG Lu-yi, HUANG En, TAO Xing-hua. Phosphorus fertilization alters complexity of paddy soil dissolved organic matter[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2301-2312.
[4] HUANG Xiao-long, JIANG Ting, WU Zhen-ping, ZHANG Wan-na, XIAO Hai-jun . Overwintering parasitism is positively associated with population density in diapausing larvae of Chilo suppressalis[J]. >Journal of Integrative Agriculture, 2020, 19(3): 785-792.
[5] Akhtar Zunnu Raen, DANG Cong, WANG Fang, PENG Yu-fa, YE Gong-yin. Thrips-mediated impacts from transgenic rice expressing Cry1Ab on ecological fitness of non-target predator Orius tantilus (Hemiptera: Anthocoridae)[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2059-2069.
[6] CHEN Yang, LAI Feng-xiang, SUN Yan-qun, HONG Li-ying, TIAN Jun-ce, ZHANG Zhi-tao, FU Qiang. Cry1Ab rice does not impact biological characters and functional response of Cyrtorhinus lividipennis preying on Nilaparvata lugens eggs[J]. >Journal of Integrative Agriculture, 2015, 14(10): 2011-2018.
[7] LAI Yun-song, HUANG Hai-qing, XU Meng-yun, WANG Liang-chao, ZHANG Xiao-bo, ZHANG Ji-wen , TU Ju-min. Development of Insect-Resistant Hybrid Rice by Introgressing the Bt Gene from Bt Rice Huahui 1 into II-32A/B, a Widely Used Cytogenic Male Sterile System[J]. >Journal of Integrative Agriculture, 2014, 13(10): 2081-2090.
[8] SHI Zhao-peng, DU Shang-gen, YANG Guo-qing, LU Zhen-zhen , WU Jin-cai. Effects of Pesticide Applications on the Biochemical Properties of Transgenic cry 2A Rice and the Life History Parameters of Nilaparvata lugens Stål (Homptera: Delphacidae)[J]. >Journal of Integrative Agriculture, 2013, 12(9): 1606-1613.
[9] Akhtar Zunnu Raen, YE Gong-yin, LU Zeng-bin, CHANG Xue, SHEN Xiao-jing, PENG Yu-fa. Impact Assessments of Transgenic cry1Ab Rice on the Population Dynamics of Five Non-Target Thrips Species and Their General Predatory Flower Bug in Bt and Non-Bt Rice Fields Using Color Sticky Card Traps[J]. >Journal of Integrative Agriculture, 2013, 12(10): 1807-1815.
[10] HAN Yu, XU Xue-liang, MA Wei-hua, YUAN Ben-qi, WANG Hui, LIU Fang-zhou, WANG Man-qun, WU . The Influence of Transgenic cry1Ab/cry1Ac, cry1C and cry2A Rice on Non- Target Planthoppers and Their Main Predators Under Field Conditions [J]. >Journal of Integrative Agriculture, 2011, 10(11): 1739-1747.
No Suggested Reading articles found!