Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Assessment of CH4 flux and its influencing drivers in the rice-wheat agroecosystem of the Huai River Basin, China
Xiaolan Yu1, Fangmin Zhang1#, Yanqiu Fang1, Xiaohan Zhao1, Kaidi Zhang2, 3, Yanyu Lu2, 3#

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology, College of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China

2 Anhui Institute of Meteorological Sciences/Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China

3 Shouxian National Climatology Observatory, Huai River Basin Typical Farm Eco-Meteorological Experiment Field of CMA, Shouxian 232200, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  为了解中国淮河流域农业生态系统中CH4通量的变化及其气候驱动因素,于201911月至202110月,在安徽省寿县的典型水稻-小麦轮作系统中利用开路涡度相关技术观测了CH4通量。然后,利用Akaike信息准则方法对这些变化及其驱动因素进行了分析。结果显示:(1CH4通量呈现明显的日变化,在当地时间9:00~13:00期间出现单峰值。水稻生长季节(RGS)的营养生长期间,CH4通量最高峰出现在11:00,峰值为2.15 µg m-2 s-1。(2CH4通量也表现出明显的季节变化。RGS的营养生长阶段的平均CH4通量(193.8±74.2 mg m-2 d-1)是所有生长阶段中最高的。非水稻生长季节的年总CH4通量(3.2 g m-2)相对较少,仅占RGSCH4通量(23.9 g m-2)的88.2%。(3)无论是在RGS还是非RGS中,CH4通量均随着空气温度、土壤温度和土壤含水量的增加而显著增加,而在RGS中随着饱和水汽压差的增加而显著减少。本研究为全面了解淮河流域稻-麦轮作农业生态系统中CH4通量提供了依据。此外,我们的研究结果有助于验证和修正该地区的CH4模型。

Abstract  To understand the CH4 flux variations and their climatic drivers in the rice-wheat agroecosystem in the Huai River Basin of China, the CH4 flux was observed by using open-path eddy covariance at a typical rice-wheat rotation system in Anhui Province from November 2019 to October 2021. The variations and their drivers were then analyzed with the Akaike information criterion method. CH4 flux showed distinct diurnal variations with single peaks during 9:00~13:00 local time. The highest peak was 2.15 µg m-2 s-1 which occurred at 11:00 in the vegetative growth stage in the rice growing season (RGS). CH4 flux also showed significant seasonal variations. The average CH4 flux in the vegetative growth stage in the RGS (193.8±74.2 mg m-2 d-1) was the highest among all growth stages. The annual total CH4 flux in the non-rice growing season (3.2 g m-2, 11.8%) was relatively small compared to that in the RGS (23.9 g m-2, 88.2%). CH4 flux increased significantly with increase in air temperature, soil temperature, and soil water content in both the RGS and the non-RGS, while it decreased significantly with increase in vapor pressure deficit in the RGS. This study provided a comprehensive understanding of the CH4 flux and its drivers in the rice-wheat rotation agroecosystem in the Huai River Basin of China. In addition, our findings will be helpful for the validation and adjustment of the CH4 models in this region.
Keywords:  CH4 flux       eddy covariance method        rice-wheat rotation agroecosystem        Huai River Basin  
Online: 25 April 2024  
Fund: This work was supported by the Natural Science Foundation of Jiangsu Province (BK20220017), the Innovation Development Project of China Meteorological Administration (CXFZ2023J073), the Key Research and Development Program of Anhui Province, China (2022M07020003), the Graduate Student Practice and Innovation Program of Jiangsu Province, China (SJCX22_0374).
About author:  Xiaolan Yu, Mobile: +86-18151092087, E-mail: xiaolan-yu@qq.com; #Correspondence Fangmin Zhang, Mobile: +86-18795908462, E-mail: fmin.zhang@nuist.edu.cn; Yanyu Lu, Mobile: +86-13866716763, E-mail: ahqxlyy@163.com.

Cite this article: 

Xiaolan Yu, Fangmin Zhang, Yanqiu Fang, Xiaohan Zhao, Kaidi Zhang, Yanyu Lu. 2024. Assessment of CH4 flux and its influencing drivers in the rice-wheat agroecosystem of the Huai River Basin, China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.03.076

Alberto M C R, Wassmann R, Buresh R J, Quilty J R, Correa J T Q, Sandro J M, Enteno C A R. 2014. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crop Research, 160, 12-21.

Aulakh M S, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. 2001. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology, 3, 139-148.

Baruah K K, Gogoi B, Gogoi P. 2010. Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy. Physiology and Molecular Biology of Plants, 16, 79-91.

Chang K R, William J R, Sara H K. 2021. Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications, 12, 2266.

Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 60, 609-640.

Cowan N, Maire J, Krol D, Cloy J M, Hargreaves P, Murphy R, Carswell A, Jones S K, Hinton N, Anderson M, Famulari D, Bell M J, Stack P, Levy P, Skiba U, Drewer J. 2021. Agricultural soils: A sink or source of methane across the British Isles? European Journal of Soil Science, 72, 1842-1862.

Dai S, Ju W, Zhang Y, He Q, Song L, Li J. 2019. Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales. The Science of the Total Environment, 690, 973-990.

Dijkstra F A, Morgan J A, Follett R, Lecain D R. 2013. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Global Change Biology, 19, 1816-1826.

Du E, Terrer C, Pellegrini A, Ahlstrm A, Lissa C V, Zhao X, Xia N, Wu X, Jackson R B. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226.

Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N O, Katul G, Keronen P, Kowalski A, Lai C T, Law B E, et al. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69.

Ge H X, Zhang H S, Zhang H, Cai X H, Song Y, Kang L. 2017. The characteristics of methane flux from an irrigated rice farm in east China measured using the eddy covariance method. Agricultural and Forest Meteorology, 249, 228-238.

Ibrom A, Dellwik E, Flvbjerg H. 2007. Strong low-pass filtering effects on water vapor flux measurements with closed-path eddy correlation system. Agricultural and Forest Meteorology, 147, 140-156.

IPCC (Intergovernmental Panel on Climate Change). 2021. Climate Change 2021-the Physical Science Basis. Cambridge University Press, United Kingdom.

Iwata H, Mano M, Ono K, Tokida T, Kawazoe T, Kosugi Y, Sakabe A, Takahashi K, Miyata A. 2018. Exploring sub-daily to seasonal variations in methane exchange in a single crop rice paddy in central Japan. Atmospheric Environment, 179, 156-165.

Knox S H, Matthes J H. 2016. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Jornual of Geophysical Research, 121, 978-1001.

Koebsch F, Jurasinski G, Koch M, Hofmann J, Glatzel S. 2015. Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 204, 94-105.

Li H, Yang X R, Weng B S, Su J Q, Nie S A, Gilbert J A, Zhu Y G. 2016. The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. Soil Biology and Biochemistry, 100, 59-65.

Li H, Zhao M, Peng C, Guo H, Wang Q, Zhao B. 2021. Gross ecosystem productivity dominates the control of ecosystem methane flux in rice paddies. Land, 10, 1186.

Long K D, Flanagan L B. 2010. Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Global Change Biology, 16, 2420-2435.

Ma L H, Liu B, Cui Y L, Shi Y Z. 2021. Variations and drivers of methane fluxes from double-cropping paddy fields in southern China at diurnal, seasonal and inter-seasonal timescales. Water, 13, 2171.

Medlyn B E, Duursma R A, Eamus D, Ellsworth D S, Prentice I C, Barton C, Crous K Y, Angelis P D, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology17, 2134-2144.

Minami K, Mosier A, Sass R. 1994. CH4 and N2O Global Emissions and Controls from Rice Fields and other Agricultural and Industrial Sources. National Institute of Agro-Environmental Sciences, Japan. pp. 27-39.

Novick K A, Ficklin D L, Stoy P C, Williams C A, Bohrer G, Oishi A C, Papuga S A, Blanken P D, Noormets A, Sulman B N. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 6, 1023-1027.

Peng X, Wei Z, Meng J. 2020. Conversion of winter flooded rice paddy planting to rice-wheat rotation decreased methane emissions during the rice-growing seasons-science direct. Soil and Tillage Research, 198, 104490.

Qian H Y, Jin Y G, Chen J, Huang S, Liu Y L, Zhang J, Deng A X, Zou J W, Pan G X, Ding Y F, Jiang Y, Groenigen K J V, Zhang W J. 2022. Acclimation of CH4 emissions from paddy soil to atmospheric CO2 enrichment in a growth chamber experiment. The Crop Journal, 10, 140-146.

Schrier-Uijl A P, Kroon P S, Hensen A, Leffelaar P A, Berendse F, Veenendaal E M. 2010. Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat. Agricultural and Forest Meteorology, 150, 825-831.

Song W, Wang H, Wang G, Chen L, Jin Z, Zhuang Q, He J. 2015. Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season. Journal of Geophysical Research: Biogeosciences, 120, 1475-1490.

Sun H F, Zhou S, Fu Z S, Chen G F, Liu G L, Song X F. 2016. Effects of high temperature and low precipitation on CH4 and N2O emission and yield of different rice varieties. China Environmental Science, 36, 3540-3547. (in Chinese)

Sun X, Chen Y Y, Xiao Y. 2019. Increased N fertilizer input enhances CH4 and N2O emissions from soil amended with low amount of milk vetch residues. Paddy and Water Environment, 17, 597-604.

Turetsky M, Treat C, Waldrop M, Waddington J, Harden J, McGuire A. 2008. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research: Biogeosciences, 113, G00A10-n/a.

Wang M, Shangguan X, Shen R, Wassmann R, Seiler W. 1993. Methane production, emission and possible control measures in the rice agriculture. Advances in Atmospheric Sciences, 10, 307-314.

Wu J J, Li Q X, Chen J W, Lei Y, Zhang Q, Yang F, Zhang D D, Zhang Q F, Cheng X L. 2018. Afforestation enhanced soil CH4 uptake rate in subtropical China: Evidence from carbon stable isotope experiments. Soil Biology and Biochemistry, 118, 199-206.

Xia Y, Fu C, Wu H., Wu H H, Zhang H X, Liao A M, Chen J Y. 2023. Exploring the effects of extreme weather events on methane emissions from croplands: A study combining site and global modeling. Agricultural and Forest Meteorology, 335, 109454.

Xu P, Zhou W, Jiang M D, Shaaban M, Zhou M H, Zhu B, Ren X J, Jiang Y B, Hu R G. 2020. Conversion of winter flooded rice paddy planting to rice-wheat rotation decreased methane emissions during the rice-growing seasons. Soil and Tillage Research, 198, 104409.

Zhang M, Xiao Q T, Zhang Z. 2019. Methane flux dynamics in a submerged aquatic vegetation zone in a subtropical lake. Science of the Total Environment, 672, 400-409.

Zhang X Z, Wang J Y, Zhang T L. 2021. Assessment of methane emissions from China's agricultural system and low carbon measures. Environmental Science & Technology, 3, 200-208. (in Chinese)

Zhu T T, Zhou Y L, Ju W M, Li J, Hu L, Yuan S, Xing X L. 2023. The linkage between methane fluxes and gross primary productivity at diurnal and seasonal scales on a rice paddy field in Eastern China. Journal of Geophysical Research: Biogeosciences, 128, e2023JG007632.

Zhu X L, Ji Y, Huang Q, Shen W Y, Wei Z J, Ma J, Zhang G B, Xu H. 2023. Temporal variation of methanogenic pathways in rice fields under three different cropping systems. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-023-01769-7.

No related articles found!
No Suggested Reading articles found!