Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 4203-4215    DOI: 10.1016/j.jia.2024.03.076
Special Issue: 农业生态环境-气体排放和重金属Agro-ecosystem & Environment—Gas emission & heavy metals
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Assessment of CH4 flux and its influencing drivers in the rice–wheat agroecosystem of the Huai River Basin, China

Xiaolan Yu1, Fangmin Zhang1#, Yanqiu Fang1, Xiaohan Zhao1, Kaidi Zhang2, 3, Yanyu Lu2, 3#

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology, College of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China

2 Anhui Institute of Meteorological Sciences/Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China

3 Shouxian National Climatology Observatory, Huai River Basin Typical Farm Eco-Meteorological Experiment Field of China Meteorological Administration, Shouxian 232200, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
为了解中国淮河流域农业生态系统中CH4通量的变化及其气候驱动因素,于2019年11月至2021年10月,在安徽省寿县的典型水稻-小麦轮作系统中利用开路涡度相关技术观测了CH4通量。然后,利用Akaike信息准则方法对这些变化及其驱动因素进行了分析。结果显示:(1)CH4通量呈现明显的日变化,在当地时间9:00~13:00期间出现单峰值。水稻生长季节(RGS)的营养生长期间,CH4通量最高峰出现在11:00,峰值为2.15 µg m-2 s-1。(2)CH4通量也表现出明显的季节变化。RGS的营养生长阶段的平均CH4通量(193.8±74.2 mg m-2 d-1)是所有生长阶段中最高的。非水稻生长季节的年总CH4通量(3.2 g m-2)相对较少,仅占RGS总CH4通量(23.9 g m-2)的88.2%。(3)无论是在RGS还是非RGS中,CH4通量均随着空气温度、土壤温度和土壤含水量的增加而显著增加,而在RGS中随着饱和水汽压差的增加而显著减少。本研究为全面了解淮河流域稻-麦轮作农业生态系统中CH4通量提供了依据。此外,我们的研究结果有助于验证和修正该地区的CH4模型。


Abstract  

To understand the CH4 flux variations and their climatic drivers in the rice–wheat agroecosystem in the Huai River Basin of China, the CH4 flux was observed by using open-path eddy covariance at a typical rice–wheat rotation system in Anhui Province, China from November 2019 to October 2021.  The variations and their drivers were then analyzed with the Akaike information criterion method.  CH4 flux showed distinct diurnal variations with single peaks during 9:00–13:00 local time.  The highest peak was 2.15 µg m–2 s–1 which occurred at 11:00 in the vegetative growth stage in the rice growing season (RGS).  CH4 flux also showed significant seasonal variations.  The average CH4 flux in the vegetative growth stage in the RGS (193.8±74.2 mg m–2 d–1) was the highest among all growth stages.  The annual total CH4 flux in the non-rice growing season (3.2 g m–2) was relatively small compared to that in the RGS (23.9 g m–2).  CH4 flux increased significantly with increase in air temperature, soil temperature, and soil water content in both the RGS and the non-RGS, while it decreased significantly with increase in vapor pressure deficit in the RGS.  This study provided a comprehensive understanding of the CH4 flux and its drivers in the rice–wheat rotation agroecosystem in the Huai River Basin of China.  In addition, our findings will be helpful for the validation and adjustment of the CH4 models in this region.


Keywords:  CH4 flux       eddy covariance method        rice-wheat rotation agroecosystem        Huai River Basin  
Received: 17 November 2023   Accepted: 01 March 2024
Fund: 
This work was supported by the Natural Science Foundation of Jiangsu Province, China (BK20220017), the Innovation Development Project of China Meteorological Administration (CXFZ2023J073), the Key Research and Development Program of Anhui Province, China (2022M07020003), the Graduate Student Practice and Innovation Program of Jiangsu Province, China (SJCX22_0374).
About author:  Xiaolan Yu, Mobile: +86-18151092087, E-mail: xiaolan-yu@qq.com; #Correspondence Fangmin Zhang, Mobile: +86-18795908462, E-mail: fmin.zhang@nuist.edu.cn; Yanyu Lu, Mobile: +86-13866716763, E-mail: ahqxlyy@163.com

Cite this article: 

Xiaolan Yu, Fangmin Zhang, Yanqiu Fang, Xiaohan Zhao, Kaidi Zhang, Yanyu Lu. 2024. Assessment of CH4 flux and its influencing drivers in the rice–wheat agroecosystem of the Huai River Basin, China. Journal of Integrative Agriculture, 23(12): 4203-4215.

Alberto M C R, Wassmann R, Buresh R J, Quilty J R, Correa J T Q, Sandro J M, Enteno C A R. 2014. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research160, 12–21.

Aulakh M S, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H. 2001. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology3, 139–148.

Baruah K K, Gogoi B, Gogoi P. 2010. Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy. Physiology and Molecular Biology of Plants16, 79–91.

Chang K R, William J R, Sara H K. 2021. Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications12, 2266.

Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews60, 609–640.

Cowan N, Maire J, Krol D, Cloy J M, Hargreaves P, Murphy R, Carswell A, Jones S K, Hinton N, Anderson M, Famulari D, Bell M J, Stack P, Levy P, Skiba U, Drewer J. 2021. Agricultural soils: A sink or source of methane across the British Isles? European Journal of Soil Science72, 1842–1862.

Dai S, Ju W, Zhang Y, He Q, Song L, Li J. 2019. Variations and drivers of methane fluxes from a rice–wheat rotation agroecosystem in eastern China at seasonal and diurnal scales. Science of the Total Environment690, 973–990.

Dijkstra F A, Morgan J A, Follett R, Lecain D R. 2013. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland. Global Change Biology19, 1816–1826.

Du E, Terrer C, Pellegrini A, Ahlstrm A, Lissa C V, Zhao X, Xia N, Wu X, Jackson R B. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience13, 221–226.

Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N O, Katul G, Keronen P, Kowalski A, Lai C T, Law B E, et al. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology107, 43–69.

Ge H X, Zhang H S, Zhang H, Cai X H, Song Y, Kang L. 2017. The characteristics of methane flux from an irrigated rice farm in east China measured using the eddy covariance method. Agricultural and Forest Meteorology249, 228–238.

Ibrom A, Dellwik E, Flvbjerg H. 2007. Strong low-pass filtering effects on water vapor flux measurements with closed-path eddy correlation system. Agricultural and Forest Meteorology147, 140–156.

IPCC (Intergovernmental Panel on Climate Change). 2021. Climate Change 2021 - the Physical Science Basis. Cambridge University Press, United Kingdom.

Iwata H, Mano M, Ono K, Tokida T, Kawazoe T, Kosugi Y, Sakabe A, Takahashi K, Miyata A. 2018. Exploring sub-daily to seasonal variations in methane exchange in a single crop rice paddy in central Japan. Atmospheric Environment179, 156–165.

Knox S H, Matthes J H. 2016. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Jornual of Geophysical Research121, 978–1001.

Koebsch F, Jurasinski G, Koch M, Hofmann J, Glatzel S. 2015. Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology204, 94–105.

Li H, Yang X R, Weng B S, Su J Q, Nie S A, Gilbert J A, Zhu Y G. 2016. The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. Soil Biology and Biochemistry100, 59–65.

Li H, Zhao M, Peng C, Guo H, Wang Q, Zhao B. 2021. Gross ecosystem productivity dominates the control of ecosystem methane flux in rice paddies. Land10, 1186.

Long K D, Flanagan L B. 2010. Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Global Change Biology16, 2420–2435.

Ma L H, Liu B, Cui Y L, Shi Y Z. 2021. Variations and drivers of methane fluxes from double-cropping paddy fields in southern China at diurnal, seasonal and inter-seasonal timescales. Water13, 2171.

Medlyn B E, Duursma R A, Eamus D, Ellsworth D S, Prentice I C, Barton C, Crous K Y, Angelis P D, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology17, 2134–2144.

Minami K, Mosier A, Sass R. 1994. CH4 and N2O Global Emissions and Controls from Rice Fields and other Agricultural and Industrial Sources. National Institute of Agro-Environmental Sciences, Japan. pp. 27–39.

Novick K A, Ficklin D L, Stoy P C, Williams C A, Bohrer G, Oishi A C, Papuga S A, Blanken P D, Noormets A, Sulman B N. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change6, 1023–1027.

Peng X, Wei Z, Meng J. 2020. Conversion of winter flooded rice paddy planting to rice–wheat rotation decreased methane emissions during the rice-growing seasons-science direct. Soil and Tillage Research198, 104490.

Qian H Y, Jin Y G, Chen J, Huang S, Liu Y L, Zhang J, Deng A X, Zou J W, Pan G X, Ding Y F, Jiang Y, Groenigen K J V, Zhang W J. 2022. Acclimation of CH4 emissions from paddy soil to atmospheric CO2 enrichment in a growth chamber experiment. The Crop Journal10, 140–146.

Schrier-Uijl A P, Kroon P S, Hensen A, Leffelaar P A, Berendse F, Veenendaal E M. 2010. Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat. Agricultural and Forest Meteorology150, 825–831.

Song W, Wang H, Wang G, Chen L, Jin Z, Zhuang Q, He J. 2015. Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season. Journal of Geophysical Research: Biogeosciences120, 1475–1490.

Sun H F, Zhou S, Fu Z S, Chen G F, Liu G L, Song X F. 2016. Effects of high temperature and low precipitation on CH4 and N2O emission and yield of different rice varieties. China Environmental Science36, 3540–3547. (in Chinese)

Sun X, Chen Y Y, Xiao Y. 2019. Increased N fertilizer input enhances CH4 and N2O emissions from soil amended with low amount of milk vetch residues. Paddy and Water Environment17, 597–604.

Turetsky M, Treat C, Waldrop M, Waddington J, Harden J, McGuire A. 2008. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical ResearchBiogeosciences113, G00A10.

Wang M, Shangguan X, Shen R, Wassmann R, Seiler W. 1993. Methane production, emission and possible control measures in the rice agriculture. Advances in Atmospheric Sciences10, 307–314.

Wu J J, Li Q X, Chen J W, Lei Y, Zhang Q, Yang F, Zhang D D, Zhang Q F, Cheng X L. 2018. Afforestation enhanced soil CH4 uptake rate in subtropical China: Evidence from carbon stable isotope experiments. Soil Biology and Biochemistry118, 199–206.

Xia Y, Fu C, Wu H., Wu H H, Zhang H X, Liao A M, Chen J Y. 2023. Exploring the effects of extreme weather events on methane emissions from croplands: A study combining site and global modeling. Agricultural and Forest Meteorology335, 109454.

Xu P, Zhou W, Jiang M D, Shaaban M, Zhou M H, Zhu B, Ren X J, Jiang Y B, Hu R G. 2020. Conversion of winter flooded rice paddy planting to rice–wheat rotation decreased methane emissions during the rice-growing seasons. Soil and Tillage Research198, 104409.

Zhang M, Xiao Q T, Zhang Z. 2019. Methane flux dynamics in a submerged aquatic vegetation zone in a subtropical lake. Science of the Total Environment672, 400–409.

Zhang X Z, Wang J Y, Zhang T L. 2021. Assessment of methane emissions from China’s agricultural system and low carbon measures. Environmental Science & Technology, 3, 200–208. (in Chinese)

Zhu T T, Zhou Y L, Ju W M, Li J, Hu L, Yuan S, Xing X L. 2023. The linkage between methane fluxes and gross primary productivity at diurnal and seasonal scales on a rice paddy field in Eastern China. Journal of Geophysical Research: Biogeosciences128, e2023JG007632.

Zhu X L, Ji Y, Huang Q, Shen W Y, Wei Z J, Ma J, Zhang G B, Xu H. 2023. Temporal variation of methanogenic pathways in rice fields under three different cropping systems. Biology and Fertility of Soils6, 743–756.

No related articles found!
No Suggested Reading articles found!