Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 132-146    DOI: 10.1016/j.jia.2024.03.073
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Biochar amendment modulates xylem ionic constituents and ABA signaling: Its implications in enhancing water-use efficiency of maize (Zea mays L.) under reduced irrigation regimes

Heng Wan1, 4, Zhenhua Wei1#, Chunshuo Liu1, Xin Yang6, Yaosheng Wang5, Fulai Liu2, 3#

1 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education/Northwest A&F University, Yangling 712100, China

2 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, Taastrup DK-2630, Denmark

3 Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 101499, China

4 Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, Wageningen 6700 AA, the Netherlands

5 State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs/Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 6 Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

 Highlights 
Wheat-straw biochar improves maize growth and water-use efficiency under partial root-zone drying irrigation.
Biochar modulates the xylem sap constituent and ABA-based chemical signaling.
Reduced irrigation refines stomatal morphology: smaller but denser distribution.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米是干旱和半干旱地区的重要粮食作物,而在水资源有限的种植环境中,提升玉米水分利用效率(WUE)尤为关键。植物生长调控措施对玉米的形态、气孔行为及水分管理有显著影响,但具体机制仍待深入探索。该研究发以传统充分灌溉为对照,揭示了生物炭联合交替灌溉处理在减少玉米水分使用的同时改变了木质部的离子成分,调控了玉米的脱落酸(ABA)信号传导,通过减少气孔开度来降低水分散失,从而显著提高了玉米的水分利用效率(WUE)。研究表明,小麦秸秆生物炭(WSB)在干旱环境中通过改变叶片气孔的大小和密度,增强了植株对水分的高效利用。生物炭联合交替灌溉通过增强ABA信号调节玉米气孔开闭,进而提高了玉米的整体光合效率和抗旱能力。该研究为干旱地区玉米生产中生物炭的应用提供了理论依据,为玉米在水分有限环境下的高效种植提供了新思路。



Abstract  
While biochar amendment enhances plant productivity and water-use efficiency (WUE), particularly under water-limited conditions, the specific mechanisms driving these benefits remain unclear.  Thus, the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize (Zea mays L.) plants, focusing on xylem composition, root-to-shoot signaling, stomatal behavior, and WUE.  Maize plants were cultivated in split-root pots filled with clay loam soil, amended by either wheat-straw biochar (WSB) or softwood biochar (SWB) at 2% (w/w).  Plants received full irrigation (FI), deficit irrigation (DI), or partial root-zone drying irrigation (PRD) from the 4-leaf to the grain-filling stage.  Our results revealed that the WSB amendment significantly enhanced plant water status, biomass accumulation, and WUE under reduced irrigation, particularly when combined with PRD.  Although reduced irrigation inhibited photosynthesis, it enhanced WUE by modulating stomatal morphology and conductance.  Biochar amendment combined with reduced irrigation significantly increased xylem K+, Ca2+, Mg2+, NO3, Cl, PO43–, and SO42– but decreased Na+, which in turn lowered xylem pH.  Moreover, biochar amendment and especially WSB amendment further increased abscisic acid (ABA) contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.  The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density, thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.  The combined application of WSB and PRD can, therefore, emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE, especially under water-limited conditions.


Keywords:  biochar       alternate partial root-zone drying irrigation        xylem composition        abscisic acid        stomatal morphology        stomatal conductance  
Received: 17 October 2023   Accepted: 28 January 2024
Fund: 
This work was supported by the Natural Science Basic Research Program of Shaanxi Province, China (2024JC-YBQN-0491).  Heng Wan would like to thank the Chinese Scholarship Council (CSC) (202206300064).  We would like to thank the College of Agriculture, Northwest A&F University for providing seeds for this experiment. 
About author:  Heng Wan, Mobile: +86-15754881557, E-mail: heng.wan@nwafu.edu.cn; #Correspondence Zhenhua Wei, E-mail: hnpdswzh@163.com; Fulai Liu, E-mail: fl@plen.ku.dk

Cite this article: 

Heng Wan, Zhenhua Wei, Chunshuo Liu, Xin Yang, Yaosheng Wang, Fulai Liu. 2025. Biochar amendment modulates xylem ionic constituents and ABA signaling: Its implications in enhancing water-use efficiency of maize (Zea mays L.) under reduced irrigation regimes. Journal of Integrative Agriculture, 24(1): 132-146.

Agbna G H D, She D, Liu Z, Elshaikh N A, Shao G, Timm L C. 2017. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae222, 90–101.

Akhtar S S, Li G, Andersen M N, Liu F. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management138, 37–44.

Ali M, Talukder M. 2008. Increasing water productivity in crop production - A synthesis. Agricultural Water Management95, 1201–1213.

Asch F. 2000. Determination of abscisic acid by indirect enzyme linked immuno sorbent assay (ELISA) (technical report). Laboratory for Agro-hydrology and Bioclimatology, Department of Agricultural Sciences, The Royal Veterinary and Agricultural University, Denmark. pp. 12–56.

Bahrun A, Jensen C R, Asch F, Mogensen V O. 2002. Drought-induced changes in xylem pH, ionic composition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). Journal of Experimental Botany53, 251–263.

Baiamonte G, Crescimanno G, Parrino F, De Pasquale C. 2019. Effect of biochar on the physical and structural properties of a sandy soil. Catena175, 294–303.

Baronti S, Vaccari F, Miglietta F, Calzolari C, Lugato E, Orlandini S, Pini R, Zulian C, Genesio L. 2014. Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy53, 38–44.

Birch H F. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil10, 9–31.

Blum A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research112, 119–123.

Brown H T, Escombe F. 1900. Static diffusion of gases and liquids in relation to the assimilation of carbon and translocation in plants. Philosophical Transactions of the Royal Society of London (Series B), 193, 223–291.

Cameron R, Ritchie G, Robson A. 1986. Relative toxicities of inorganic aluminum complexes to barley. Soil Science Society of America Journal50, 1231–1236.

Cao G, Sun J, Chen M, Sun H, Zhang G. 2021. Co-transport of ball-milled biochar and Cd2+ in saturated porous media. Journal of Hazardous Materials416, 125725.

Chew J, Joseph S, Chen G, Zhang Y, Zhu L, Liu M, Taherymoosavi S, Munroe P, Mitchell D R, Pan G. 2022. Biochar-based fertiliser enhances nutrient uptake and transport in rice seedlings. Science of the Total Environment826, 154174.

Cornelissen G, Kukulska Z, Kalaitzidis S, Christanis K, Gustafsson Ö. 2004. Relations between environmental black carbon sorption and geochemical sorbent characteristics. Environmental Science & Technology38, 3632–3640.

Crawford N M, Glass A D. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science3, 389–395.

Custos J M, Moyne C, Sterckeman T. 2020. How root nutrient uptake affects rhizosphere pH: A modelling study. Geoderma369, 114314.

Dai Z, Zhang X, Tang C, Muhammad N, Wu J, Brookes P C, Xu J. 2017. Potential role of biochars in decreasing soil acidification - A critical review. Science of the Total Environment581, 601–611.

Davies W J, Kudoyarova G, Hartung W. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. Journal of Plant Growth Regulation24, 285–295.

Dorji K, Behboudian M H, Zegbe-Domínguez J A. 2005. Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial root-zone drying. Scientia Horticulturae104, 137–149.

Fan C, Chen H, Li B, Xiong Z. 2017. Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China. Biogeosciences14, 2851–2863.

FAO (Food and Agriculture Organization of the United Nations), IFAD (International Fund for Agricultural Development), UNICEF (United Nations Children's Fund), WFP (World Food Programme), WHO (World Health Organization). 2020. The state of food security and nutrition in the world 2020. Transforming food systems for affordable healthy diets. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Food and Agriculture Organization of the United Nations, Rome.

Farhangi-Abriz S, Torabian S. 2018. Effect of biochar on growth and ion contents of bean plant under saline condition. Environmental Science and Pollution Research25, 11556–11564.

Franks P J, Farquhar G D. 2001. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginianaPlant Physiology125, 935–942.

Gollan T, Schurr U, Schulze E D. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentrations of cations, anions, amino-acids in, and pH of, the xylem sap. Plant Cell and Environment15, 551–559.

Guo F Q, Young J, Crawford N M. 2003. The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in ArabidopsisThe Plant Cell15, 107–117.

Guo L, Born M L, Niu W, Liu F. 2021. Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes. Agricultural Water Management245, 106580.

Hartung W, Radin J W. 1989. Abscisic acid in the mesophyll apoplast and in the root xylem sap of water-stressed plants: The significance of pH gradients. Current Topics in Plant Biochemistry & Physiology8, 110–124.

Hernandez-Santana V, Rodriguez-Dominguez C M, Fernandez J E, Diaz-Espejo A. 2016. Role of leaf hydraulic conductance in the regulation of stomatal conductance in almond and olive in response to water stress. Tree Physiology36, 725–735.

Hou J, Liu X, Zhang J, Wei Z, Ma Y, Wan H, Liu J, Cui B, Zong Y, Chen Y. 2023a. Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress. Agricultural Water Management290, 108584.

Hou J, Wan H, Liang K, Cui B, Ma Y, Chen Y, Liu J, Wang Y, Liu X, Zhang J. 2023b. Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant. Science of the Total Environment904, 166978.

Hou J, Zhang J, Liu X, Ma Y, Wei Z, Wan H, Liu F. 2023c. Effect of biochar addition and reduced irrigation regimes on growth, physiology and water use efficiency of cotton plants under salt stress. Industrial Crops and Products198, 116702.

Hsiao T C. 1973. Plant responses to water stress. Annual Review of Plant Physiology24, 519–570.

Jackson M B, Saker L R, Crisp C M, Else M A, Janowiak F. 2003. Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure. Plant and Soil253, 103–113.

Jensen C R, Battilani A, Plauborg F, Psarras G, Chartzoulakis K, Janowiak F, Stikic R, Jovanovic Z, Li G, Qi X, Liu F, Jacobsen S E, Andersen M N. 2010. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agricultural Water Management98, 403–413.

Jiang F, Hartung W. 2008. Long-distance signalling of abscisic acid (ABA): The factors regulating the intensity of the ABA signal. Journal of Experimental Botany59, 37–43.

Jones D, Murphy D, Khalid M, Ahmad W, Edwards-Jones G, DeLuca T. 2011. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry43, 1723–1731.

Joseph S D, Camps-Arbestain M, Lin Y, Munroe P, Chia C, Hook J, Van Zwieten L, Kimber S, Cowie A, Singh B. 2010. An investigation into the reactions of biochar in soil. Soil Research48, 501–515.

Kang S. 1997. The controlled alternative irrigation - A new approach for water saving regulation in farm land. Agricultural Research in the Arid Areas15, 1–6.

Kang S, Hu X, Goodwin I, Jerie P. 2002. Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Scientia Horticulturae92, 277–291.

Korovetska H, Novak O, Juza O, Gloser V. 2014. Signalling mechanisms involved in the response of two varieties of Humulus lupulus L. to soil drying: I. changes in xylem sap pH and the concentrations of abscisic acid and anions. Plant and Soil380, 375–387.

Lake J A, Woodward F I. 2008. Response of stomatal numbers to CO2 and humidity: Control by transpiration rate and abscisic acid. New Phytologist179, 397–404.

Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change11, 403–427.

Lehmann J, Joseph S. 2015. Biochar for environmental management: Science, technology and implementation. Science and Technology25, 15801–15811.

Li S, Liu F. 2022. Vapour pressure deficit and endogenous ABA level modulate stomatal responses of tomato plants to soil water deficit. Environmental and Experimental Botany199, 104889.

Liu F, Andersen M N, Jacobsen S E, Jensen C R. 2005a. Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying. Environmental and Experimental Botany54, 33–40.

Liu F, Jensen C R, Andersen M N. 2005b. A review of drought adaptation in crop plants: Changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Australian Journal of Agricultural Research56, 1245–1252.

Liu F, Shahnazari A, Andersen M N, Jacobsen S E, Jensen C R. 2006. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany57, 3727–3735.

Liu F L, Jensen C R, Andersen M N. 2003. Hydraulic and chemical signals in the control of leaf expansion and stomatal conductance in soybean exposed to drought stress. Functional Plant Biology30, 65–73.

Liu F L, Jensen C R, Andersen M N. 2005a. A review of drought adaptation in crop plants: Changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Australian Journal of Agricultural Research56, 1245–1252.

Liu F L, Jensen C R, Shahanzari A, Andersen M N, Jacobsen S E. 2005b. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science168, 831–836.

Liu X, Fan Y, Long J, Wei R, Kjelgren R, Gong C, Zhao J. 2013. Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings. Journal of Environmental Sciences25, 585–595.

Liu X, Ma Y, Manevski K, Andersen M N, Li Y, Wei Z, Liu F. 2022. Biochar and alternate wetting–drying cycles improving rhizosphere soil nutrients availability and tobacco growth by altering root growth strategy in Ferralsol and Anthrosol. Science of the Total Environment806, 150513.

Liu X, Wei Z, Ma Y, Liu J, Liu F. 2021a. Effects of biochar amendment and reduced irrigation on growth, physiology, water-use efficiency and nutrients uptake of tobacco (Nicotiana tabacum L.) on two different soil types. Science of the Total Environment770, 144769.

Liu X, Wei Z, Manevski K, Liu J, Ma Y, Andersen M N, Liu F. 2021b. Partial root-zone drying irrigation increases water-use efficiency of tobacco plants amended with biochar. Industrial Crops and Products166, 113487.

Loewenstein N J, Pallardy S G. 1998. Drought tolerance, xylem sap abscisic acid and stomatal conductance during soil drying: A comparison of young plants of four temperate deciduous angiosperms. Tree Physiology18, 421–430.

Luo, Z, Kong X, Zhang Y, Li W, Dong H. 2019. Leaf-derived jasmonate mediates water uptake from hydrated cotton roots under partial root-zone irrigation. Plant Physiology180, 00315.

Lyu S, Du G, Liu Z, Zhao L, Lyu D. 2016. Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum38, 1–10.

Maathuis F J, Filatov V, Herzyk P, Krijger G, Axelsen K B, Chen S, Green B J, Li Y, Madagan K L, Sánchez-Fernández R. 2003. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. The Plant Journal35, 675–692.

Macrobbie E. 1987. Ionic Relations of Guard Cells. Stanford University Press, USA.

Murtaza G, Ahmed Z, Eldin S M, Ali B, Bawazeer S, Usman M, Iqbal R, Neupane D, Ullah A, Khan A. 2023. Biochar–soil–plant interactions: A cross talk for sustainable agriculture under changing climate. Frontiers in Environmental Science11, 1059449.

Nan H, Zhao L, Yang F, Liu Y, Xiao Z, Cao X, Qiu H. 2020. Different alkaline minerals interacted with biomass carbon during pyrolysis: Which one improved biochar carbon sequestration? Journal of Cleaner Production255, 120162.

Oladele S, Adeyemo A, Awodun M. 2019. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma336, 1–11.

Parvizi H, Sepaskhah A R, Ahmadi S H. 2016. Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes. Agricultural Water Management163, 146–158.

Qi X, Torii K U. 2018. Hormonal and environmental signals guiding stomatal development. BMC Biology16, 21.

Quarrie S, Jones H G. 1977. Effects of abscisic acid and water stress on development and morphology of wheat. Journal of Experimental Botany28, 192–203.

Rodrigues M L, Santos T P, Rodrigues A P, de Souza C R, Lopes C M, Maroco J P, Pereira J S, Chaves M M. 2008. Hydraulic and chemical signalling in the regulation of stomatal conductance and plant water use in field grapevines growing under deficit irrigation. Functional Plant Biology35, 565–579.

Rodriguez P, Dell’Amico J, Morales D, Blanco M J S, Alarcon J J. 1997. Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. The Journal of Agricultural Science128, 439–444.

Rogovska N, Laird D A, Karlen D L. 2016. Corn and soil response to biochar application and stover harvest. Field Crops Research187, 96–106.

Sarabi B, Fresneau C, Ghaderi N, Bolandnazar S, Streb P, Badeck F W. 2019. Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. Plant Plant Physiology and Biochemistry141, 1–19.

Schell J. 1997. Interdependence of pH, malate concentration, and calcium and magnesium concentrations in the xylem sap of beech roots. Tree Physiology17, 479–483.

Schurr U, Schulze E D. 1995. The concentration of xylem sap constituents in root exudate, and in sap from intact, transpiring castor bean plants (Ricinus communis L.). PlantCell & Environment18, 409–420.

Sekiya N, Yano K. 2008. Stomatal density of cowpea correlates with carbon isotope discrimination in different phosphorus, water and CO2 environments. New Phytologist179, 799–807.

Sheng Y, Zhu L. 2018. Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of the Total Environment622, 1391–1399.

Sun Y, Yan F, Cui X, Liu F. 2014. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes. Journal of Plant Physiology171, 1248–1255.

Verslues P E, Zhu J K. 2005. Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions33, 375–379.

Tan C S, Cornelisse A, Buttery B R. 1981. Transpiration, stomatal conductance, and photosynthesis of tomato plants with various proportions of root system supplied with water. Journal of the American Society for Horticultural Science106, 147–151.

Tardieu F, Lafarge T, Simonneau T H. 1996. Stomatal control by fed or endogenous xylem ABA in sunflower: Interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species. Plant, Cell & Environment19, 75–84.

Thomas D S, Eamus D. 2002. Seasonal patterns of xylem sap pH, xylem abscisic acid concentration, leaf water potential and stomatal conductance of six evergreen and deciduous Australian savanna tree species. Australian Journal of Botany50, 229–236.

Turan V, Khan S A, Iqbal M, Ramzani P M A, Fatima M. 2018. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicology and Environmental Safety161, 409–419.

Wan H, Chen Y, Cui B, Liu X, Hou J, Wei Z, Liu J, Liu F. 2023a. Biochar amendment increases C and N retention in the soil–plant systems: Its implications in enhancing plant growth and water-use efficiency under reduced irrigation regimes of maize (Zea mays L.). Journal of Soil Science and Plant Nutrition23, 1576–1588.

Wan H, Liu X, Shi Q, Chen Y, Jiang M, Zhang J, Cui B, Hou J, Wei Z, Hossain M A, Liu F. 2023b. Biochar amendment alters root morphology of maize plant: Its implications in enhancing nutrient uptake and shoot growth under reduced irrigation regimes. Frontiers in Plant Science14, 1122742.

Wan X C, Landhausser S M, Zwiazek J J, Lieffers V J. 2004. Stomatal conductance and xylem sap properties of aspen (Populus tremuloides) in response to low soil temperature. Physiologia Plantarum122, 79–85.

Wang L, Ok Y S, Tsang D C, Alessi D S, Rinklebe J, Wang H, Mašek O, Hou R, O’Connor D, Hou D. 2020. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management36, 358–386.

Wang M, Zheng, Q, Shen Q, Guo S. 2013. The critical role of potassium in plant stress response. International Journal of Molecular Sciences14, 7370–7390.

Wang Y, Liu F, Andersen M N, Jensen C R. 2010a. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation. Functional Plant Biology37, 175–182.

Wang Y, Liu F, Jensen C R. 2012. Comparative effects of deficit irrigation and alternate partial root-zone irrigation on xylem pH, ABA and ionic concentrations in tomatoes. Journal of Experimental Botany63, 1907–1917.

Wang Y, Liu F, de Neergaard A, Jensen L S, Luxhoi J, Jensen C R. 2010b. Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition in tomatoes. Plant and Soil337, 167–177.

Wang Z, Liu F, Kang S, Jensen C R. 2012. Alternate partial root-zone drying irrigation improves nitrogen nutrition in maize (Zea mays L.) leaves. Environmental and Experimental Botany75, 36–40.

Waraich E A, Ahmad R, Ashraf M Y, Saifullah, Ahmad M. 2011. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae ScandinavicaSection B-Soil & Plant Science61, 291–304.

Wei Z, Du T, Zhang J, Xu S, Cambre P J, Davies W J. 2016. Carbon isotope discrimination shows a higher water use efficiency under alternate partial root-zone irrigation of field-grown tomato. Agricultural Water Management165, 33–43.

Van der Werf A, Nagel O W. 1996. Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: Opinion. Plant and Soil185, 21–32.

Weyers S L, Das K C, Gaskin J W, Liesch A M. 2023. Pine chip and poultry litter derived biochars affect C and N dynamics in two georgia, USA, Ultisols. Agronomy13, 531.

Wilkinson S, Davies W J. 1997. Xylem sap pH increase: A drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiology113, 559–573.

Wilkinson S, Davies W J. 2002. ABA-based chemical signalling: The co-ordination of responses to stress in plants. Plant Cell and Environment25, 195–210.

Yan F, Li X, Liu F. 2017. ABA signaling and stomatal control in tomato plants exposure to progressive soil drying under ambient and elevated atmospheric CO2 concentration. Environmental and Experimental Botany139, 99–104.

Yan F, Sun Y, Song F, Liu F. 2012. Differential responses of stomatal morphology to partial root-zone drying and deficit irrigation in potato leaves under varied nitrogen rates. Scientia Horticulturae145, 76–83.

Yang X, Borno M L, Wei Z, Liu F. 2021. Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels. Agricultural Water Management254, 106987.

Zhang J, Amonette J E, Flury M. 2021. Effect of biochar and biochar particle size on plant-available water of sand, silt loam, and clay soil. Soil and Tillage Research, 212, 104992.

Zhang J, Davies W J. 1997. Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves. Journal of Experimental Botany38, 2015–2023.

Zhang Y, Wang J, Feng Y. 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena202, 105284.

Zhao L, Nan H, Kan Y, Xu X, Qiu H, Cao X. 2019. Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent. Environmental Pollution254, 113114.

Zubair M, Ramzani P M A, Rasool B, Khan M A, Akhtar I, Turan V, Tauqeer H M, Farhad M, Khan S A, Iqbal J. 2021. Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.). Journal of Environmental Management284, 112047.

[1] Jinwen Pang, Zhonghong Tian, Mengjie Zhang, Yuhao Wang, Tianxiang Qi, Qilin Zhang, Enke Liu, Weijun Zhang, Xiaolong Ren, Zhikuan Jia, Kadambot H. M. Siddique, Peng Zhang. Enhancing carbon sequestration and greenhouse gas mitigation in semiarid farmland: The promising role of biochar application with biodegradable film mulching[J]. >Journal of Integrative Agriculture, 2025, 24(2): 517-526.
[2] Lin Chen, Chao Li, Jiahao Zhang, Zongrui Li, Qi Zeng, Qingguo Sun, Xiaowu Wang, Limin Zhao, Lugang Zhang, Baohua Li. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2255-2269.
[3] Ping’an Zhang, Mo Li, Qiang Fu, Vijay P. Singh, Changzheng Du, Dong Liu, Tianxiao Li, Aizheng Yang.

Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato [J]. >Journal of Integrative Agriculture, 2024, 23(2): 680-697.

[4] Jinxia Wang, Qiu Huang, Kai Peng, Dayang Yang, Guozhen Wei, Yunfei Ren, Yixuan Wang, Xiukang Wang, Nangia Vinay, Shikun Sun, Yanming Yang, Fei Mo. Biochar induced trade-offs and synergies between ecosystem services and crop productivity[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3882-3895.
[5] TANG Chan-juan, LUO Ming-zhao, ZHANG Shuo, JIA Guan-qing, TANG Sha, JIA Yan-chao, ZHI Hui, DIAO Xian-min. Variations in chlorophyll content, stomatal conductance and photosynthesis in Setaria EMS mutants[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1618-1630.
[6] Yeison M QUEVEDO, Liz P MORENO, Eduardo BARRAGÁN. Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1310-1320.
[7] LIU Jian-long, ZHANG Chen-xiao, LI Tong-tong, LIANG Cheng-lin, YANG Ying-jie, LI Ding-Li, CUI Zhen-hua, WANG Ran, SONG Jian-kun. Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1346-1356.
[8] Christian Adler PHARES, Selorm AKABA. Co-application of compost or inorganic NPK fertilizer with biochar influenced soil quality, grain yield and net income of rice[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3600-3610.
[9] YUAN Hong-zhao, ZHU Zhen-ke, WEI Xiao-meng, LIU Shou-long, PENG Pei-qin, Anna Gunina, SHEN Jian-lin, Yakov Kuzyakov, GE Ti-da, WU Jin-shui, WANG Jiu-rong. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1474-1485.
[10] CHEN Xue-jiao, LIN Qi-mei, Muhammad Rizwan, ZHAO Xiao-rong, LI Gui-tong. Steam explosion of crop straws improves the characteristics of biochar as a soil amendment[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1486-1495.
[11] GUAN Song, LIU Si-jia, LIU Ri-yue, ZHANG Jin-jing, REN Jun, CAI Hong-guang, LIN Xin-xin. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1496-1507.
[12] SHI Ren-yong, LI Jiu-yu, NI Ni, XU Ren-kou. Understanding the biochar’s role in ameliorating soil acidity[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1508-1517.
[13] HUANG Min, FAN Long, JIANG Li-geng, YANG Shu-ying, ZOU Ying-bin, Norman Uphoff. Continuous applications of biochar to rice: Effects on grain yield and yield attributes[J]. >Journal of Integrative Agriculture, 2019, 18(3): 563-570.
[14] ZHU Qian, KONG Ling-jian, SHAN Yu-zi, YAO Xing-dong, ZHANG Hui-jun, XIE Fu-ti, AO Xue. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2242-2254.
[15] CHEN Zhi-liang, ZHANG Jian-qiang, HUANG Ling, YUAN Zhi-hui, LI Zhao-jun, LIU Min-chao. Removal of Cd and Pb with biochar made from dairy manure at low temperature[J]. >Journal of Integrative Agriculture, 2019, 18(1): 201-210.
No Suggested Reading articles found!