Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 1929-1939    DOI: 10.1016/j.jia.2023.11.025
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha 

Yingzhen Wang1, 2*, Ying Wu1*, Xinlei Wang1, Wangmei Ren1, Qinyao Chen1, Sijia Zhang1, Feng Zhang1, Yunzhi Lin3, Junyang Yue1#, Yongsheng Liu1, 3#

1 School of Horticulture, Anhui Agricultural University, Hefei 230036, China

2 School of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui 323000, China 3  College of Life Science, Sichuan University, Chengdu 610064, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

果实的品质和产量是猕猴桃育种过程中首要关注的性状,但目前关于猕猴桃果实大小、形状和维生素C含量等性状的遗传机制研究非常有限,制约了猕猴桃分子育种的发展。本研究以毛花猕猴桃华特自然杂交后代的140个个体为材料,通过全基因组重测序技术,共获得了888万个高度可信的SNP标记。对单果重、果实形状、维生素C含量、单枝花序数量等8个关键农艺性状进行了全基因组关联分析,定位了59个含有潜在功能基因的遗传位点,并在候选区间内鉴定到了与单果重、果实纵经、维生素C含量、单枝花序数量等性状相关的候选基因,如AeWUSCHEL, AeCDK1(细胞周期依赖激酶),AeAO1(抗坏血酸氧化酶),AeCO1CONSTANS-like 4)等。通过构建AeAO1RNAi载体,并注射到猕岛31’果实中干扰AeAO1基因的表达,结果表明猕岛31果实中抗坏血酸氧化酶活性显著下降,而维生素C含量显著增加。本研究通过全基因组关联分析的方法定位到了毛花猕猴桃果实品质和产量形成的候选基因,为猕猴桃分子标记辅助育种提供了新的见解。



Abstract  

Quality and yield are the primary concerns in kiwifruit breeding, but research on the genetic mechanisms of fruit size, shape, and ascorbic acid (ASA) content is currently very limited, which restricts the development of kiwifruit molecular breeding.  In this study, we obtained a total of 8.88 million highly reliable single nucleotide polymorphism (SNP) markers from 140 individuals from the natural hybrid offspring of Actinidia eriantha cv. ‘White’ using whole genome resequencing technology.  A genome-wide association study was conducted on eight key agronomic traits, including single fruit weight, fruit shape, ASA content, and the number of inflorescences per branch.  A total of 59 genetic loci containing potential functional genes were located, and candidate genes related to single fruit weight, fruit length, ASA content, number of inflorescences per branch and other traits were identified within the candidate interval, such as AeWUSCHEL, AeCDK1 (cell cycle dependent kinase), AeAO1 (ascorbic oxidase) and AeCO1 (CONSTANS-like 4).  After constructing an RNAi vector for AeAO1 and injecting it into the fruit of cv. ‘Midao 31’ to interfere with the expression of the AeAO1 gene, the results showed that the activity of ascorbic oxidase in the fruit of ‘Midao 31’ significantly decreased, while the content of ASA significantly increased.  This study provides valuable insights into the genetic basis of variation in Aeriantha fruit traits, which may benefit molecular marker-assisted breeding efforts.

Keywords:  Actinidia eriantha       GWAS      SNP        QTLs        fruit quality   
Received: 05 June 2023   Accepted: 16 October 2023
Fund: This work was supported by the National Natural Science Foundation of China (U23A20204, 31972474 and 31471157).
About author:  Yingzhen Wang, E-mail: wangyingzhen91@163.com; #Correspondence Yongsheng Liu, E-mail: liuyongsheng1122@ahau.edu.cn; Junyang Yue, E-mail: yuejy@ahau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu. 2024.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  . Journal of Integrative Agriculture, 23(6): 1929-1939.

Alexander D H, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664.

Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 1, 2320–2325.

Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M. 2007. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Developmental Cell, 13, 843–856.

Asif H, Alliey-Rodriguez N, Keedy S, Tamminga C A, Sweeney J A, Pearlson G, Clementz B A, Keshavan M S, Buckley P, Liu C, Neale B, Gershon E S. 2021. GWAS significance thresholds for deep phenotyping studies can depend upon minor allele frequencies and sample size. Molecular Psychiatry, 26, 2048–2055.

Bineau E, Rambla J L, Priego-Cubero S, Hereil A, Bitton F, Plissonneau C, Granell A, Causse M. 2021. Breeding tomato hybrids for flavour: Comparison of GWAS results obtained on lines and F1 hybrids. Genes, 12, 1443.

Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.

Cong B, Barrero L S, Tanksley S D. 2008. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genetics, 40, 800–804.

Czerednik A, Busscher M, Angenent G C, de Maagd R A. 2015. The cell size distribution of tomato fruit can be changed by overexpression of CDKA1. Plant Biotechnology Journal, 13, 259–268.

Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. 2000. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 289, 85–88.

Fu B L, Wang W Q, Li X, Qi T H, Shen Q F, Li K F, Liu X F, Li S J, Allan A C, Yin X R. 2023. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor, AcNAC1. Plant Biotechnology Journal, 21, 1695–1706.

Guo D L, Zhao H L, Li Q, Zhang G H, Jiang J F, Liu C H, Yu Y H. 2019. Genome-wide association study of berry-related traits in grape [Vitis vinifera L.] based on genotyping-by-sequencing markers. Horticulture Research, 6, 11.

Guo J, Cao K, Deng C, Li Y, Zhu G R, Fang W C, Chen C W, Wang X W, Wu J L, Guan L P, Wu S, Guo W W, Yao J L, Fei Z J, Wang L R. 2020. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biology, 21, 258.

Guo S G, Zhao S J, Sun H H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, Zhang J, Lu X Q, Zhang H Y, Shang J L, Gong G Y, Wen C L, He N, Tian S W, Li M Y, Liu J P, Wang Y P, et al. 2019. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics, 51, 1616–1623.

Gong C S, Zhao S J, Yang D D, Lu X Q, Anees M, He N, Zhu H, Zhao Y, Liu W G. 2022. Genome-wide association analysis provides molecular insights into the natural variation of watermelon seed size. Horticulture Research, 9, uhab074.

Han X, Zhang Y L, Zhang Q, Ma N, Liu X Y, Tao W J, Lou Z Y, Zhong C H, Deng X W, Li D W, He H. 2023. Two haplotype-resolved, gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit. Molecular Plant, 16, 452–470.

Jin S K, Han Z G, Hu Y, Si Z F, Dai F, He L, Cheng Y, Li Y Q, Zhao T, Fang L, Zhang T Z. 2023. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. Molecular Plant, 16, 678–693.

Kampfenkel K, Van Montagu M, Inzé D. 1995. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 225, 165–167.

van der Knaap E, Chakrabarti M, Chu Y H, Clevenger J P, Illa-Berenguer E, Huang Z J, Keyhaninejad N, Mu Q, Sun L, Wang Y P, Wu S. 2014. What lies beyond the eye: The molecular mechanisms regulating tomato fruit weight and shape. Frontiers in Plant Science, 5, 227.

Li H, Durbin R. 2009a. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009b. The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079.

Li Y, Cao K, Zhu G R, Fang W C, Chen C W, Wang X W, Zhao P, Guo J, Ding T Y, Guan L P, Zhang Q, Guo W W, Fei Z J, Wang L R. 2019. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biology, 20, 36.

Liao G L, Chen L, He Y Q, Li X S, Lv Z X, Yi S Y, Zhong M, Huang C H, Jia D F, Qu X Y, Xu X B. 2021a. Three metabolic pathways are responsible for the accumulation and maintenance of high AsA content in kiwifruit (Actinidia eriantha). BMC Genomics, 22, 13.

Liao G L, Zhong M, Jiang Z Q, Tao J J, Jia D F, Qu X Y, Huang C H, Liu Q, Xu X B. 2021b. Genome-wide association studies provide insights into the genetic determination of flower and leaf traits of Actinidia eriantha. Frontiers in Plant Science, 12, 730890.

Liu C Y. 2016. Construction of high-density interspecific genetic maps and identification of QTLs for fruits in kiwifruit. Ph D thesis, Chinese Aeademy of Sciences (Wuhan Botanical Garden), China. (in Chinese)

Liu J P, Van Eck J, Cong B, Tanksley S D. 2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences of the United States of America, 99, 13302–13306.

Liu X Y, Wu R M, Bulley S M, Zhong C H, Li D W. 2022. Kiwifruit MYBS1-like and GBF3 transcription factors influence l-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3. New Phytologist, 234, 1782–1800.

Liu Y F, Lv G W, Yang Y Q, Ma K X, Ren X L, Li M J, Liu Z D. 2022. Interaction of AcMADS68 with transcription factors regulates anthocyanin biosynthesis in red-fleshed kiwifruit. Horticulture Research, 10, uhac252.

Lv X C, Zeng X L, Hu H M, Chen L X, Zhang F, Liu R, Liu Y, Zhou X L, Wang C S, Wu Z, Kim C, He Y H, Du J M. 2021. Structural insights into the multivalent binding of the Arabidopsis FLOWERING LOCUS T promoter by the CO-NF-Y master transcription factor complex. Plant Cell, 33, 1182–1195.

Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, et al. 2019. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature Communications, 10, 1154.

Macnee N, Hilario E, Tahir J, Currie A, Warren B, Rebstock R, Hallett I C, Chagné D, Schaffer R J, Bulley S M. 2021. Peridermal fruit skin formation in Actinidia sp. (kiwifruit) is associated with genetic loci controlling russeting and cuticle formation. BMC Plant Biology, 21, 334.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.

Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier M C, Delalande C, Bouzayen M, Brunel D, Causse M. 2011. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiology, 156, 2244–2254.

Nishio S, Hayashi T, Shirasawa K, Saito T, Terakami S, Takada N, Takeuchi Y, Moriya S, Itai A. 2021. Genome-wide association study of individual sugar content in fruit of Japanese pear (Pyrus spp.). BMC Plant Biology, 2, 378.

Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato H, Hori M, Nakamura Y, Tanaka T. 2002. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nature Genetics, 32, 650–654.

Popowski E, Thomson S J, Knäbel M, Tahir J, Crowhurst R N, Davy M, Foster T M, Schaffer R J, Tustin D S, Allan A C, McCallum J, Chagné D. 2021. Construction of a high-density genetic map for hexaploid kiwifruit (Actinidia chinensis var. deliciosa) using genotyping by sequencing. G3 Genes|Genomes|Genetics, 11, jkab142.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559–575.

Shu P, Zhang Z X, Wu Y, Chen Y, Li K Y, Deng H, Zhang J, Zhang X, Wang J Y, Liu Z B, Xie Y, Du K, Li M Z, Bouzayen M, Hong Y G, Zhang Y, Liu M C. 2023. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytologist, 238, 2064–2079.

Sumitomo K, Shirasawa K, Isobe S, Hirakawa H, Harata A, Nakano M, Nakano Y, Yagi M, Hisamatsu T, Yamaguchi H, Taniguchi F. 2022. A genome-wide association and fine-mapping study of white rust resistance in hexaploid chrysanthemum cultivars with a wild diploid reference genome. Horticulture Research, 9, uhac170.

Tang W, Sun X P, Yue J Y, Tang X F, Jiao C, Yang Y, Niu X L, Miao M, Zhang D F, Huang S X, Shi W, Li M Z, Fang C B, Fei Z J, Liu Y S. 2019. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping. Gigascience, 8, giz027.

Tiwari S B, Shen Y, Chang H C, Hou Y L, Harris A, Ma S F, McPartland M, Hymus G J, Adam L, Marion C, Belachew A, Repetti P P, Reuber T L, Ratcliffe O J. 2010. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist, 187, 57–66.

Uffelmann E, Huang Q Q, Munung N S, de Vries J, Okada Y, Martin A R, Martin H C, Lappalainen T, Posthuma D. 2021. Genome-wide association studies. Nature Reviews Methods Primers, 1, 59.

Wang L H, Tang W, Hu Y W, Zhang Y B, Sun J Q, Guo X H, Lu H, Yang Y, Fang C B, Niu X L, Yue J, Fei Z, Liu Y S. 2019. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. Plant Journal, 99, 359–378.

Wang R C, Shu P, Zhang C, Zhang J L, Chen Y, Zhang Y X, Du K, Xie Y, Li M Z, Ma T, Zhang Y, Li Z G, Grierson D, Pirrello J, Chen K S, Bouzayen M, Zhang B, Liu M C. 2022. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). New Phytologist, 233, 373–389.

Wang Y Z, Dong M H, Wu Y, Zhang F, Ren W M, Lin Y Z, Chen Q Y, Zhang S J, Yue J Y, Liu Y S. 2023. Telomere-to-telomere and haplotype-resolved genome of the kiwifruit Actinidia eriantha. Molecular Horticulture, 3, 4.

Wu Y J, Xie M, Zhang Q C, Jiang G H, Zhang H Q, Long Q J, Han W J, Chen J W, Shong G H. 2009. Characteristics of ‘White’: A new easy-peel cultivar of Actinidia eriantha. New Zealand Journal of Crop and Horticultural Science, 37, 369–373.

Xiao H, Jiang N, Schaffner E, Stockinger E J, van der Knaap E. 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 319, 1527–1530.

Xu X B, Huang C H, Qu X Y, Chen M, Zhong M, Lang B B, Chen C J, Xie M, Zhang W B. 2015. A new easy peeling Actinidia eriantha cultivar ‘Ganmi 6’. Acta Horticulturae Sinica, 42, 2539–2540. (in Chinese)

Yue J Y, Liu J C, Tang W, Wu Y Q, Tang X F, Li W, Yang Y, Wang L H, Huang S X, Fang C B, Zhao K, Fei Z J, Liu Y S, Zheng Y. 2020. Kiwifruit genome database (KGD): A comprehensive resource for kiwifruit genomics. Horticulture Research, 7, 117.

Yuste-Lisbona F J, Fernández-Lozano A, Pineda B, Bretones S, Ortíz-Atienza A, García-Sogo B, Müller N A, Angosto T, Capel J, Moreno V, Jiménez-Gómez J M, Lozano R. 2020. ENO regulates tomato fruit size through the floral meristem development network. Proceedings of the National Academy of Sciences of the United States of America, 117, 8187–8195.

Zhao X, Muhammad N, Zhao Z X, Yin K L, Liu Z G, Wang L X, Luo Z, Wang L H, Liu M J. 2021. Molecular regulation of fruit size in horticultural plants: A review. Scientia Horticulturae, 288, 110353.

Zhang A D, Wang W Q, Tong Y, Li M J, Grierson D, Ferguson I, Chen K S, Yin X R. 2018. Transcriptome analysis identifies a zinc finger protein regulating starch degradation in kiwifruit. Plant Physiology, 178, 850–863.

Zhang C, Wu J Y, Cui L W, Fang J G. 2022. Mining of candidate genes for grape berry cracking using a genome-wide association study. Journal of Integrative Agriculture, 21, 2291–2304.

Zhang M Y, Xue C, Hu H J, Li J M, Xue Y S, Wang R Z, Fan J, Zou C, Tao S T, Qin M F, Bai B, Li X L, Gu C, Wu S, Chen X, Yang G Y, Liu Y Y, Sun M Y, Fei Z J, Zhang S L, et al. 2021. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications, 12, 1144.

Zhang Q, Liu C Y, Liu Y F, VanBuren R, Yao X H, Zhong C H, Huang H W. 2015. High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers. DNA Research, 22, 367–375.

Zhang Y, Wan J Y, He L, Lan H, Li L J. 2019. Genome-wide association analysis of plant height using the maize F1 population. Plants, 8, 432.

Zheng Q Y, Takei-Hoshi R, Okumura H, Ito M, Kawaguchi K, Otagaki S, Matsumoto S, Luo Z R, Zhang Q L, Shiratake K. 2022. Genome editing of SlMYB3R3, a cell cycle transcription factor gene of tomato, induces elongated fruit shape. Journal of Experimental Botany, 73, 7312–7325.

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44, 821–824.

[1] Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. >Journal of Integrative Agriculture, 2024, 23(1): 217-227.
No Suggested Reading articles found!