Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (3): 795-805    DOI: 10.1016/j.jia.2023.12.029
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

The NAC transcription factor LuNAC61 negatively regulates fiber development in flax (Linum usitatissimum L.)

Dongwei Xie1*, Jing Li1*, Wan Li2, Lijun Sun1, Zhigang Dai3, Wenzhi Zhou4, Jianguang Su3, Jian Sun1# #br#

1 School of Life Sciences, Nantong University, Nantong 226019, China

2 Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

3 Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China

4 Jiangsu Sanshu Biotechnology Co. Ltd., Nantong 226001, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  亚麻是一种重要的纤维作物,具有优异的纺织性能,它也是研究韧皮纤维发育的模式植物。纤维发育受基因的协同调控尤其是NACNAMATAF1/2CUC2)转录因子纤维次生细胞壁形成过程中发挥着重要作用。在亚麻中过表达LuNAC61导致转基因植株较野生型植株顶部分生组织区叶片稀疏,茎纤维素含量显著降低。通过扫描电镜和染色观察发现过表达植株纤维束较野生型明显减少。GUS染色分析显示LuNAC61启动子在亚麻茎韧皮纤维中具有高活性。此外,LuPLATZLuCesA家族的几个成员表现出与LuNAC61的显著共表达关系。亚细胞定位表明LuPLATZ24蛋白存在于细胞核和细胞质中,LuNAC61蛋白仅存在于细胞核中,LuCesA10蛋白存在于细胞核及内质网中。双荧光素酶报告基因实验结果揭示LuPLATZ24促进LuNAC61表达,而LuNAC61抑制LuCesA10表达由此推测该代谢网络很有可能参与调节亚麻纤维发育。研究为全面深入分析亚麻纤维发的机制以及利用生物技术手段提高亚麻纤维产量奠定了重要的基础

Abstract  Flax is a crucial fiber crop that exhibits excellent textile properties and serves as a model plant for investigating phloem fiber development.  The regulation of multiple genes significantly influences fiber development, notably involving NAC (NAM, ATAF1/2, CUC2) transcription factors in forming the fiber secondary cell wall (SCW).  Overexpression of LuNAC61 in flax resulted in sparse top meristematic zone leaves and significantly reduced stem cellulose content.  Scanning electron microscopy and staining observations revealed a significant reduction in fiber bundles.  β-Glucuronidase (GUS) staining analysis demonstrated high activity of the LuNAC61 promoter in the bast fibers of the flax stem.  Additionally, several members of the LuPLATZ and LuCesA families exhibited significant coexpression with LuNAC61.  Subcellular localization indicated the presence of LuPLATZ24 protein in the nucleus and cytoplasm, LuNAC61 protein exclusively in the nucleus, and LuCesA10 in the nucleus and endoplasmic reticulum.  LuPLATZ24 positively regulates LuNAC61, whereas LuNAC61 negatively affects LuCesA10, suggesting the involvement of a metabolic network in regulating flax fiber development.  In conclusion, this study provides a critical opportunity for a comprehensive and in-depth analysis of the mechanisms governing flax fiber development and the potential use of biotechnology to enhance flax fiber yield.
Keywords:  flax       fiber development        LuNAC61        gene function        gene interaction   
Received: 30 August 2023   Accepted: 17 November 2023
Fund: This work was supported by the National Natural Science Foundation of China (31801409), the Safe Preservation and Accurate Identification of Flax Germplasm Resources in South, China (23ZH174), the Construction of Modern Agricultural Industrial Technology System, China (CARS-16-E01), the Protection and Utilization of Crop Germplasm Resources, China (2016NWB044), and the National Science and Technology Resource Sharing Service Platform Project, China (NCGRC-2020-15).  
About author:  Dongwei Xie, E-mail: xiedongwei@163.com; Jing Li, E-mail: 2147456394@qq.com; #Correspondence Jian Sun, Tel: +86-513-85012818, E-mail: sunjian8416@163.com * These authors contributed equally to this study. © 2024 CAAS. Published by Elsevier B.V. This

Cite this article: 

Dongwei Xie, Jing Li, Wan Li, Lijun Sun, Zhigang Dai, Wenzhi Zhou, Jianguang Su, Jian Sun. 2024.

The NAC transcription factor LuNAC61 negatively regulates fiber development in flax (Linum usitatissimum L.) . Journal of Integrative Agriculture, 23(3): 795-805.

Azim J B, Khan M F H, Hassan L, Robin A H K. 2020. Genome-wide characterization and expression profiling of plant-specific platz transcription factor family genes in Brassica rapa L. Plant Breeding and Biotechnology, 8, 28–45.

Dong X, Qian T, Chu J, Zhang X, Liu Y, Dai X, He M. 2023. Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose. Journal of Integrative Agriculture, 22, 1351–1365.

Guo X J, Fu Y X, Lee Y J, Chern M, Li M L, Cheng M P, Dong H X, Yuan Z W, Gui L X, Yin J J, Qing H, Zhang C B, Pu Z, Liu Y J, Li W T, Li W, Qi P F, Chen G Y, Jiang Q T, Ma J, et al. 2022. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 20, 1311–1326.

Hande A S, Katageri I S, Jadhav M P, Adiger S, Gamanagatti S, Padmalatha K V, Dhandapani G, Kanakachari M, Kumar P A, Reddy V S. 2017. Transcript profiling of genes expressed during fiber development in diploid cotton (Gossypium arboreum L.). BMC Genomics, 18, 675.

Hobson N, Deyholos M K. 2013. Genomic and expression analysis of the flax (Linum usitatissimum) family of glycosyl hydrolase 35 genes. BMC Genomics, 14, 207–210.

Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6, 3901–3907.

Khotyleva L, Galinousky D, Anisimova N, Raiski A, Leontiev V, Titok V. 2014. Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.). Russian Journal of Genetics, 50, 26–34.

Ko J H, Yang S H, Park S H, Lerouxel O, Han K H. 2007. ANAC012, a member of the plant-specific nac transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. The Plant Journal, 50, 1035–1048.

Li Q, Wang J, Ye J, Zheng X, Xiang X, Li C, Fu M, Wang Q, Zhang Z, Wu Y. 2017. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell, 29, 2661–2675.

Liu S, Yang R, Liu M, Zhang S, Yan K, Yang G, Huang J, Zheng C, Wu C. 2020. PLATZ2 negatively regulates salt tolerance in Arabidopsis seedlings by directly suppressing the expression of the CBL4/SOS3 and CBL10/SCaBP8 genes. Plant Physiology, 172, 5589–5602.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.

MacMillan C P, Birke H, Chuah A, Brill E, Tsuji Y, Ralph J, Dennis E S, Llewellyn D, Pettolino F A. 2017. Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls. BMC Genomics, 18, 539.

McFarlane H, Döring A, Persson S. 2014. The cell biology of cellulose synthesis. Annual Review of Plant Biology, 65, 69–94.

Mokshina N, Gorshkova T, Deyholos M K. 2014. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinoustype cellulosic walls of flax (Linum usitatissimum L.) bast fibers. PLoS ONE, 9, e97949.

Mokshina N, Gorshkov O, Galinousky D, Gorshkova T. 2020. Genes with bast fiber-specific expression in flax plants - Molecular keys for targeted fiber crop improvement. Industrial Crops and Products, 152, 112549.

Nagano Y, Furuhashi H, Inaba T, Sasaki Y. 2001. A novel class of plant-specific zinc-dependent DNAbinding protein that binds to A/T-rich DNA sequences. Nucleic Acids Research, 29, 4097–4105.

Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Höfte H. 2002. KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell, 14, 2001–2013.

Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville C R. 2007. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104, 15566–15571.

Ritu P, Nalini T, Amarish D, Seiko J, Neelu K, Shubham J, Kumar C V, Gautam B. 2022. A comparative study of phenotypic variability and physico–mechanical properties of dual-purpose flax fiber varieties in India. Journal of Natural Fibers, 19, 15680–15689.

Roach M J, Mokshina N Y, Badhan A, Snegireva A V, Hobson N, Deyholos M K, Gorshkova T A. 2011. Development of cellulosic secondary walls in flax fibers requires β-galactosidase. Plant Physiology, 156, 1351–1363.

Sun L, Alariqi M, Zhu Y, Li J, Li Z, Wang Q, Li Y, Rui H, Zhang X, Jin S. 2018. Red fluorescent protein (DsRed2), an ideal reporter for cotton genetic transformation and molecular breeding. Crop Journal, 6, 366–376.

Szyjanowicz P M J, McKinnon I, Taylor N G, Gardiner J, Jarvis M C, Turner S R. 2004. The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. The Plant Journal, 37, 730–740.

Tanaka K, Murata K, Yamazak M, Onosato K, Miyao A, Hirochika H. 2003. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiology, 133, 73–83.

Tuttle J R, Nah G, Duke M V, Alexander C, Guan X, Song Q, Chen Z J, Scheffler B E, Haigler C H. 2015. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignificatior and prolongs elongation. Genomics, 16, 477.

Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shang G Y, Miao J, Xie Y. 2019. The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiology, 180, 2077–2090.

Wang J, Ji C, Li Q, Zhou Y, Wu Y. 2018. Genome-wide analysis of the plant-specific PLATZ proteins in maize and identification of their general role in interaction with RNA polymerase III complex. BMC Plant Biology, 18, 1–12.

Xie D, Dai Z, Yang Z, Tang Q, Deng C, Xu Y, Wang J, Chen J, Zhao D, Zhang S, Zhang S, Su J. 2019. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism. Plant Science, 286, 98–107.

Xie D, Yang X, He R, Huo H, Ye Z, Ren X, Yuan H, Dai Z, Sun J, Su J. 2022. Comprehensive analysis of the UDP‑glycosyltransferase gene family in flax [Linum usitatissimum L.] and functional verification of the role of LuUGT175 in the regulation of lignin biosynthesis. Industrial Crops & Products, 188, 115720.

Xie D, Li J, Zhang X, Dai Z, Zhou W, Su J, Su J. 2023. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.). Journal of Integrative Agriculture, 22, 2335–2345.

Yu Y, Chen H, Yang Y, Lou D D, Liang C B, Yuan H M, Wu G W, Xu C J. 2021. Identification and characterization of differentially expressed microRNAs and target gene related to flax stem development. Journal of Natural Fibers, 19, 5974–5990.

Yuan H M, Ning K, Guo W D, Tao L, Yu Y, Zhao L J, Wu Y, Zhang L G, Wu J Z, Guan F Z. 2019. Assessment of agronomic parameters and gene expression profifiling of flax (Linum usitatissimum L.) upon treatment with brassinosteroid and its biosynthetic inhibitor. Industrial Crops & Products, 128, 270–281.

Zhang J, Huang G Q, Zou D, Yan J Q, Li Y, Hu S, Li X B. 2018. The cotton (Gossypiian hirsutian) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. New Phytologist, 217, 625–640.

Zhang S, Yang R, Huo Y, Liu S, Yang G, Huang J, Zheng C, Wu C. 2018. Expression of cotton PLATZ1 in transgenic Arabidopsis reduces sensitivity to osmotic and salt stress for germination and seedling establishment associated with modification of the abscisic acid, gibberellin, and ethylene signalling pathways. BMC Plant Biology, 18, 1–11.

Zhao J Y, Zheng L, Wei J T, Wang Y X, Chen J, Zhou Y B, Chen M, Wang F G, Ma Y Z, Xu Z S. 2022. The soybean PLATZ transcription factor GmPLATZ17 suppresses drought tolerance by interfering with stress-associated gene regulation of GmDREB5. Crop Journal, 10, 1014–1025.

Zhong R, Demura T, Ye Z H. 2006. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell, 18, 3158–3170.

Zhong R, Richardson E A, Ye Z H. 2007. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 225, 1603–1611.

[1] XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2335-2345.
[2] YU Xiao, DUAN Zi-qiang, QIN Xiao-peng, ZHU Ying-ying, HUANG Feng-hong, PENG Deng-feng, BAI Yan-hong, DENG Qian-chun. Elucidation of the structure, antioxidant, and interfacial properties of flaxseed proteins tailored by microwave treatment[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1574-1589.
No Suggested Reading articles found!