Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1916-1929    DOI: 10.1016/j.jia.2024.06.015
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
dsHaE93 shows a high potential for the pest control of Helicoverpa armigera by inhibiting larval-pupal metamorphosis and development of wing and ovary

Kai Wang, Longlong Sun, Mengdan Zhang, Shuting Chen, Guiying Xie, Shiheng An, Wenbo Chen#, Xincheng Zhao#

Henan International Joint Laboratory of Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China

 Highlights 
HaE93 knockdown caused lethal phenotypes at the stage of Helicoverpa armigera larvae transition to adult.  
HaE93 knockdown resulted in abnormal wings and blocked the ovary development in H. armigera adults.
HaE93 knockdown resulted in about 90% of H. armigera dying or failing to reproduce offspring.
HaE93 is a potential RNAi target gene for the management of H. armigera, particularly for the older larvae.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在模式昆虫中,已有研究证明蜕皮激素诱导的转录因子E93在昆虫的变态发育过程中,幼虫组织重塑和成虫组织形成等,发挥多种作用。敲低E93基因后,可导致昆虫无法完成变态发育过程,表明E93是害虫防治的潜在靶标基因。研究中,首次鉴定了棉铃虫HaE93基因,发现HaE93基因在棉铃虫卵期、预蛹期和蛹期均高表达。注射dsHaE93后,约为60%的棉铃虫幼虫蛹期死亡。30%的棉铃虫可以化蛹,但化蛹时间延迟,且羽化和卵巢畸形这些结果表明干扰HaE93基因导致约90%的个体不能繁殖后代。干扰HaE93基因后,qRT-PCR测定显示蜕皮激素响应基因、几丁质合成相关基因、翅发育和卵巢发育相关基因的表达水平显著下调。这些结果表明HaE93通过调控发育相关基因的表达参与调控棉铃虫的变态以及表皮、翅和卵巢的发育。最后通过饲喂棉铃虫dsHaE93,结果显示棉铃虫死亡率和表型与注射dsHaE93相似,这表明HaE93可作为RNAi方法的靶基因来防控棉铃虫。



Abstract  

The ecdysone-induced transcription factor E93 in model insects plays multiple roles in the insect metamorphosis processes, such as remodeling larval tissues and determining adult tissue formation.  The knockdown of E93 in insects leads to incomplete metamorphosis, suggesting that E93 is a potential target for pest control.  In this study, the HaE93 gene in the cotton bollworm Helicoverpa armigera, a polyphagous pest of various commercial crops worldwide, was identified and found to have high expression in the egg, prepupal, and pupal stages.  The injection of dsHaE93 induced about 60% mortality in Harmigera at the larval-pupal stage.  About 30% survived but showed delayed pupation and abnormal wings, and the females developed reduced ovaries.  Therefore, about 90% of the HaE93 knockdown individuals failed to reproduce before they died.  The results of qRT-PCR showed that the expression levels of ecdysone primary-response genes, chitin synthesis-related genes, and wing and ovary development-related genes were reduced in HaE93 knockdown Harmigera.  These results indicated that HaE93 plays a critical role in larva-pupa-adult metamorphosis and the development of the cuticle, wing, and ovary in female Harmigera by regulating the expression of the associated genes.  Bioassays of dsHaE93 administered by either oral delivery or injection showed similar knockdown results, which suggested that HaE93 can be used as a target gene for the RNAi control of the pest Harmigera.

Keywords:  Helicoverpa armigera       transcription factor E93        RNAi        development and metamorphosis        wing and ovary development  
Received: 03 April 2024   Online: 27 June 2024   Accepted: 30 May 2024
Fund: This work was supported by the National Natural Science Foundation of China (32001912 and 32370525) and the Henan Provincial Natural Science Foundation, China (232300420012).  
About author:  Kai Wang, E-mail: wangkai990115@163.com; #Correspondence Wenbo Chen, E-mail: wenbochen@henau.edu.cn; Xincheng Zhao, E-mail: xincheng@henau.edu.cn

Cite this article: 

Kai Wang, Longlong Sun, Mengdan Zhang, Shuting Chen, Guiying Xie, Shiheng An, Wenbo Chen, Xincheng Zhao. 2025. dsHaE93 shows a high potential for the pest control of Helicoverpa armigera by inhibiting larval-pupal metamorphosis and development of wing and ovary. Journal of Integrative Agriculture, 24(5): 1916-1929.

Baehrecke E H, Thummel C S. 1995. The Drosophila E93 gene from the 93F early puff displays stage- and tissue-specific regulation by 20-Hydroxyecdysone. Developmental Biology171, 85–97.

Belles X. 2020. Kruppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. Archives of Insect Biochemistry and Physiology103, e21609.

Belles X, Santos C G. 2014. The MEKRE93 (Methoprene tolerant-Kruppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. Insect Biochemistry and Molecular Biology52, 60–68.

Berry D L, Baehrecke E H. 2007. Growth arrest and autophagy are required for salivary gland cell degradation in DrosophilaCell131, 1137–1148.

Chafino S, Ureña E, Casanova J, Casacuberta E, Franch-Marro X, Martín D. 2019. Upregulation of E93 gene expression acts as the trigger for metamorphosis independently of the threshold size in the beetle Tribolium castaneumCell Reports27, 1039–1049.

Chen Y, De Schutter K. 2024. Biosafety aspects of RNAi-based pests control. Pest Management Science80, 3697–3706 .

Das J, Kumar R, Shah V, Sharma A K. 2022. Functional characterization of chitin synthesis pathway genes, HaAGM and HaUAP, reveal their crucial roles in ecdysis and survival of Helicoverpa armigera (Hübner). Pesticide Biochemistry and Physiology188, 105273.

Deng Z, Zhang Y, Zhang M, Huang J, Li C, Ni X, Li X. 2020. Characterization of the first W-specific protein-coding gene for sex identification in Helicoverpa armigeraFrontiers in Genetics11, 649.

Ding N, Wang Z, Geng N, Zou H, Zhang G, Cao C, Li X, Zou C. 2020. Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. Journal of Insect Physiology122, 104041.

Dubrovsky E B. 2005. Hormonal cross talk in insect development. Trends in Endocrinology and Metabolism16, 6–11.

Eid D M, Chereddy S, Palli S R. 2020. The effect of E93 knockdown on female reproduction in the red flour beetle, Tribolium castaneumArchives of Insect Biochemistry and Physiology104, e21688.

Fernandez-Nicolas A, Machaj G, Ventos-Alfonso A, Pagone V, Minemura T, Ohde T, Daimon T, Ylla G, Belles X. 2023. Reduction of embryonic E93 expression as a hypothetical driver of the evolution of insect metamorphosis. Proceedings of the National Academy of Sciences of the United States of America120, e2216640120.

Gijbels M, Marchal E, Verdonckt T W, Bruyninckx E, Vanden Broeck J. 2020. RNAi-mediated knockdown of transcription factor E93 in nymphs of the desert locust (Schistocerca gregaria) inhibits adult morphogenesis and results in supernumerary juvenile stages. International Journal of Molecular Sciences21, 7518.

Hashiro S, Yasueda H. 2022. RNA interference-based pesticides and antiviral agents: Microbial overproduction systems for double-stranded RNA for applications in agriculture and aquaculture. Applied Sciences12, 2954.

He L, Huang Y, Tang X. 2022. RNAi-based pest control: Production, application and the fate of dsRNA. Frontiers in Bioengineering and Biotechnology10, 1080576.

Ishimaru Y, Tomonari S, Watanabe T, Noji S, Mito T. 2019. Regulatory mechanisms underlying the specification of the pupal-homologous stage in a hemimetabolous insect. Philosophical Transactions of the Royal Society (B: Biological Sciences), 374, 20190225.

Jindra M, Palli S R, Riddiford L M. 2013. The juvenile hormone signaling pathway in insect development. Annual Review of Entomology58, 181–204.

Kamsoi O, Belles X. 2020. E93-depleted adult insects preserve the prothoracic gland and molt again. Development147, dev190066.

Kayukawa T, Jouraku A, Ito Y, Shinoda T. 2017. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval-adult metamorphosis. Proceedings of the National Academy of Sciences of the United States of America114, 1057–1062.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Lam G, Nam H J, Velentzas P D, Baehrecke E H, Thummel C S. 2022. Drosophila E93 promotes adult development and suppresses larval responses to ecdysone during metamorphosis. Developmental Biology481, 104–115.

Lee C Y, Baehrecke E H. 2001. Steroid regulation of autophagic programmed cell death during development. Development128, 1443–1455.

Lee C Y, Cooksey B A K, Baehrecke E H. 2002a. Steroid regulation of midgut cell death during Drosophila development. Developmental Biology250, 101–111.

Lee C Y, Simon C R, Woodard C T, Baehrecke E H. 2002b. Genetic mechanism for the stage-and tissue specific regulation of steroid triggered programmed cell death in DrosophilaDevelopmental Biology252, 138–148.

Lee C Y, Wendel D P, Reid P, Lam G, Thummel C S, Baehreche E H. 2000. E93 directs steroid-triggered programmed cell death in DrosophilaMolecular Cell6,433–443.

Li K L, Yuan S Y, Nanda S, Wang W X, Lai F X, Fu Q, Wan P J. 2018. The roles of E93 and Kr-h1 in metamorphosis of Nilaparvata lugensFrontiers in Physiology9, 1677.

Liang G, Tan W, Guo Y. 1999. An improvement in the technique of artificial rearing cotton bollworm. Plant Protection25, 15–17.

Liu H, Wang J, Li S. 2014. E93 predominantly transduces 20-hydroxyecdysone signaling to induce autophagy and caspase activity in Drosophila fat body. Insect Biochemistry and Molecular Biology45, 30–39.

Liu X, Dai F, Guo E, Li K, Ma L, Tian L, Cao Y, Zhang G, Palli S R, Li S. 2015. 20-Hydroxyecdysone (20E) primary response gene E93 modulates 20E signaling to promote Bombyx larval-pupal metamorphosis. Journal of Biological Chemistry290, 27370–27383.

Liu X J, Jun G, Liang X Y, Zhang X Y, Zhang T T, Liu W M, Zhang J Z, Zhang M. 2022. Silencing of transcription factor E93 inhibits adult morphogenesis and disrupts cuticle, wing and ovary development in Locusta migratoriaInsect Science29, 333–343.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods25, 402–408.

Lozano J, Belles X. 2011. Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Scientific Reports1, 163.

Mao Y, Li Y, Gao H, Lin X. 2019. The direct interaction between E93 and Kr-h1 mediated their antagonistic effect on ovary development of the brown planthopper. International Journal of Molecular Sciences20, 2431.

Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P, Chen X Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology25, 1307–1313.

Mao Y B, Tao X Y, Xue X Y, Wang L J, Chen X Y. 2011. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Research20, 665–673.

Mehlhorn S, Hunnekuhl V S, Geibel S, Nauen R, Bucher G. 2021. Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: A brief guide. Frontiers in Zoology18, 60.

Mou X, Duncan D M, Baehrecke E H, Duncan I. 2012. Control of target gene specificity during metamorphosis by the steroid response gene E93Proceedings of the National Academy of Sciences of the United States of America109, 2949–2954.

Nystrom S L, Niederhuber M J, McKay D J. 2020. Expression of E93 provides an instructive cue to control dynamic enhancer activity and chromatin accessibility during development. Development147, dev181909.

Okude G, Moriyama M, Kawahara-Miki R, Yajima S, Fukatsu T, Futahashi R. 2022. Molecular mechanisms underlying metamorphosis in the most-ancestral winged insect. Proceedings of the National Academy of Sciences of the United States of America119, e2114773119.

Riddiford L M, Hiruma K, Zhou X F, Nelson C A. 2003. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogasterInsect Biochemistry and Molecular Biology33, 1327–1338.

Sharif M N, Iqbal M S, Alamn R, Awan M F, Tariq M, Ali Q, Nasir I A. 2022. Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigeraScientific Reports12, 10405.

Tabashnik B E, Carriere Y. 2019. Global patterns of resistance to Bt crops highlighting pink bollworm in the United States, China, and India. Journal of Economic Entomology112, 2513–2523.

Tang B, Yang M, Shen Q, Xu Y, Wang H, Wang S. 2017. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugensPesticide Biochemistry and Physiology137, 81–90.

Truman J W, Riddiford L M. 2019. The evolution of insect metamorphosis: A developmental and endocrine view. Philosophical Transactions of the Royal Society (B: Biological Sciences), 374, 20190070.

Ureña E, Chafino S, Manjón C, Franch-Marro X, Martín D. 2016. The occurrence of the holometabolous pupal stage requires the interaction between E93, Kruppel-Homolog 1 and Broad-Complex. PLoS Genetics12, e1006020.

Ureña E, Manjón C, Franch-Marro X, Martín D. 2014. Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. Proceedings of the National Academy of Sciences of the United States of America111, 7024–7029.

Wang W, Peng J, Li Z, Wang P, Guo M, Zhang T, Qian W, Xia Q, Cheng D. 2019. Transcription factor E93 regulates wing development by directly promoting Dpp signaling in DrosophilaBiochemical and Biophysical Research Communications513, 280–286.

Wang X, Ding Y, Lu X, Geng D, Li S, Raikhel A S, Zou Z. 2021. The ecdysone-induced protein 93 is a key factor regulating gonadotrophic cycles in the adult female mosquito Aedes aegyptiProceedings of the National Academy of Sciences of the United States of America118, e2021910118.

Wu J J, Chen F, Yang R, Shen C H, Ze L J, Jin L, Li G Q. 2022. Knockdown of ecdysone-induced protein 93F causes abnormal pupae and adults in the eggplant lady beetle. Biology11, 1640.

Wu K, Guo Y. 2005. The evolution of cotton pest management practices in China. Annual Review of Entomology50, 31–52.

Wu K M, Lu Y H, Feng H Q, Jiang Y Y, Zhao J Z. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science321, 1676–1678.

Xu X, Li T, Zhang L, Liu X. 2024. Effect of silencing the E74B gene on the development and metamorphosis of Helicoverpa armigeraPest Management Science80, 1435–1445.

Yamanaka N, Rewitz K F, O’Connor M B. 2013. Ecdysone control of developmental transitions: Lessons from Drosophila research. Annual Review of Entomology58, 497–516.

Zhang B, Yao B, Li X, Jing T, Zhang S, Zou H, Zhang G, Zou C. 2022. E74 knockdown represses larval development and chitin synthesis in Hyphantria cuneaPesticide Biochemistry and Physiology187, 105216.

Zhang H, Li H C, Miao X X. 2013. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control. Insect Science20, 15–30.

Zhao W, Li L, Zhang Y, Liu X, Wei J, Xie Y, Du M, An S. 2018. Calcineurin is required for male sex pheromone biosynthesis and female acceptance. Insect Molecular Biology27, 373–382.

Zhao X, Qin Z, Liu W, Liu X, Moussian B, Ma E, Li S, Zhang J. 2018. Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoriaInsect Biochemistry and Molecular Biology92, 1–11.

Zheng S W, Jiang X J, Mao Y W, Li Y, Gao H, Lin X D. 2023. Brown planthopper E78 regulates moulting and ovarian development by interacting with E93Journal of Integrative Agriculture22, 1455–1464.

No related articles found!
No Suggested Reading articles found!