Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (12): 2792-2804    DOI: 10.1016/S2095-3119(17)61766-0
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Gene engineering in swine for agriculture
WANG Yan-fang1, HUANG Jiao-jiao2, ZHAO Jian-guo2, 3
1 Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R.China
3 University of Chinese Academy of Sciences, Beijing 100049, P.R.China
Download:  PDF (451KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  Domestic pigs are the second most important source of meat world-wide, and the genetic improvement of economic traits, such as meat production, growth, and disease resistance, is a critical point for efficient production in pigs.  Through conventional breeding and selection programs in pigs, which are painstakingly slow processes, some economic traits, such as growth and backfat, have been greatly improved over the past several decades.  However, the improvement of many polygenetic traits is still very slow and challenging to be improved by conventional breeding strategies.  The development of reproductive knowledge and a variety of techniques, including foreign gene transfer strategies, somatic cell nuclear transfer (SCNT) and particularly, recently developed nuclease-mediated genome editing tools, has provided efficient ways to produce genetically modified (GM) pigs for the dramatic improvement of economic traits.  In this review, we briefly discuss the progress of genomic markers used in pig breeding program, trace the history of genetic engineering, mainly focusing on the progress of recently developed genome editing tools, and summarize the GM pigs which have been generated to aim at the agricultural purposes.  We also discuss the specific challenges facing application of gene engineering in pig breeding, and future prospects.
Keywords:  gene engineering        genome editing        pig        agricultural application  
Received: 13 April 2017   Accepted:
Fund: 

This study was supported by the National Natural Science Foundation of China (81671274, 31601008 and 31402045), the National Transgenic Project of China (2016ZX08009003-006), and the Elite Youth Program of the Chinese Academy of Agricultural Sciences to Wang Yanfang (ASTIP-IAS05).

Corresponding Authors:  Correspondence ZHAO Jian-guo, E-mail: zhaojg@ioz.ac.cn    
About author:  WANG Yan-fang,E-mail:wangyanfang@caas.cn

Cite this article: 

WANG Yan-fang, HUANG Jiao-jiao, ZHAO Jian-guo. 2017. Gene engineering in swine for agriculture. Journal of Integrative Agriculture, 16(12): 2792-2804.

Bi Y, Hua Z, Liu X, Hua W, Ren H, Xiao H, Zhang L, Li L, Wang Z, Laible G, Wang Y, Dong F, Zheng X. 2016. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Scientific Reports, 6, 31729.

Van Breedam W, Delputte P L, Van Gorp H, Misinzo G, Vanderheijden N, Duan X, Nauwynck H J. 2010. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. Journal of General Virology, 91, 1659–1667.

Brevini T A, Antonini S, Cillo F, Crestan M, Gandolfi F. 2007. Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology, 68(Suppl. 1), S206–S213.

Butler J R, Ladowski J M, Martens G R, Tector M, Tector A J. 2015. Recent advances in genome editing and creation of genetically modified pigs. International Journal of Surgery, 23, 217–222.

Cabot R A, Kuhholzer B, Chan A W, Lai L, Park K W, Chong K Y, Schatten G, Murphy C N, Abeydeera L R, Day B N, Prather R S. 2001. Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Animal Biotechnology, 12, 205–214.

Campbell K H, McWhir J, Ritchie W A, Wilmut I. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380, 64–66.

Capecchi M R. 2005. Gene targeting in mice: Functional analysis of the mammalian genome for the twenty-first century. Nature Reviews Genetics, 6, 507–512.

Chang K, Qian J, Jiang M, Liu Y H, Wu M C, Chen C D, Lai C K, Lo H L, Hsiao C T, Brown L, Bolen Jr J, Huang H I, Ho P Y, Shih P Y, Yao C W, Lin W J, Chen C H, Wu F Y, Lin Y J, Xu J, Wang K. 2002. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer. BMC Biotechnology, 2, 5.

Chen P, Baas T J, Mabry J W, Dekkers J C, Koehler K J. 2002. Genetic parameters and trends for lean growth rate and its comvonents in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. Journal of  Animal Science, 80, 2062–2070.

Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J, Voytas D F. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757–761.

Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38, 813–818.

Cornu T I, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung J K, Cathomen T. 2008. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Molecular Therapy, 16, 352–358.

Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W. 2001. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the United States of America, 98, 13734–13738.

Van Eenennaam A L. 2017. Genetic modification of food animals. Current Opinion in Biotechnology, 44, 27–34.

Van Eenennaam A L, Weigel K A, Young A E, Cleveland M A, Dekkers J C. 2014. Applied animal genomics: Results from the field. Annual Review of Animal Biosciences, 2, 105–139.

Ernst C W, Steibel J P. 2013. Molecular advances in QTL discovery and application in pig breeding. Trends in Genetics, 29, 215–224.

Frock R L, Hu J, Meyers R M, Ho Y J, Kii E, Alt F W. 2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nature Biotechnology, 33, 179–186.

Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V K, Weiler J E, O’Brien P J, MacLennan D H. 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science, 253, 448–451.

Geurts A M, Cost G J, Freyvert Y, Zeitler B, Miller J C, Choi V M, Jenkins S S, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis G D, et al. 2009. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 325, 433.

Golovan S P, Meidinger R G, Ajakaiye A, Cottrill M, Wiederkehr M Z, Barney D J, Plante C, Pollard J W, Fan M Z, Hayes M A, Laursen J, Hjorth J P, Hacker R R, Phillips J P, Forsberg C W. 2001. Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 19, 741–745.

Gordon J W, Scangos G A, Plotkin D J, Barbosa J A, Ruddle F H. 1980. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 77, 7380–7384.

Grobet L, Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17, 71–74.

Groenen M A, Archibald A L, Uenishi H, Tuggle C K, Takeuchi Y, Rothschild M F, Rogel-Gaillard C, Park C, Milan D, Megens H J, Li S, Larkin D M, Kim H, Frantz L A, Caccamo M, Ahn H, Aken B L, Anselmo A, Anthon C, Auvil L, et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491, 393–398.

Haft D H, Selengut J, Mongodin E F, Nelson K E. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1, e60.

Hai T, Cao C, Shang H, Guo W, Mu Y, Yang S, Zhang Y, Zheng Q, Zhang T, Wang X, Liu Y, Kong Q, Li K, Wang D, Qi M, Hong Q, Zhang R, Jia Q, Qin G, Li Y, et al. 2017. A pilot study of large-scale production of mutant pigs by ENU mutagenesis. elife, 6, e26248.

Hai T, Teng F, Guo R, Li W, Zhou Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 24, 372–375.

Hammer R E, Pursel V G, Rexroad Jr C E, Wall R J, Bolt D J, Ebert K M, Palmiter R D, Brinster R L. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 315, 680–683.

Hickey J M, Kinghorn B P, Tier B, van der Werf J H, Cleveland M A. 2012. A phasing and imputation method for pedigreed populations that results in a single-stage genomic evaluation. Genetics Selection Evolution, 44, 9.

Hickey J M, Kinghorn B P, Tier B, Wilson J F, Dunstan N, van der Werf J H. 2011. A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes. Genetics Selection Evolution, 43, 12.

Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A. 2003. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 4, 1054–1060.

Hu S, Qiao J, Fu Q, Chen C, Ni W, Wujiafu S, Ma S, Zhang H, Sheng J, Wang P, Wang D, Huang J, Cao L, Ouyang H. 2015. Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. eLife, 4, e06951.

Huang J, Guo X, Fan N, Song J, Zhao B, Ouyang Z, Liu Z, Zhao Y, Yan Q, Yi X, Schambach A, Frampton J, Esteban M A, Yang D, Yang H, Lai L. 2014. RAG1/2 knockout pigs with severe combined immunodeficiency. Journal of Immunology, 193, 1496–1503.

Iyer V, Shen B, Zhang W, Hodgkins A, Keane T, Huang X, Skarnes W C. 2015. Off-target mutations are rare in Cas9-modified mice. Nature Methods, 12, 479.

Jenko J, Gorjanc G, Cleveland M A, Varshney R K, Whitelaw C B, Woolliams J A, Hickey J M. 2015. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics Selection Evolution, 47, 55.

Jiang K, Xu P, Li W, Yang Q, Li L, Qiao C, Gong H, Zheng H, Zhou Z, Fu H, Li Q, Xing Y, Ren J. 2017. The increased expression of follicle-stimulating hormone leads to a decrease of fecundity in transgenic Large White female pigs. Transgenic Research, 26, 515–527.

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.

Kambadur R, Sharma M, Smith T P, Bass J J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 7, 910–916.

Kang Y K, Koo D B, Park J S, Choi Y H, Chung A S, Lee K K, Han Y M. 2001. Aberrant methylation of donor genome in cloned bovine embryos. Nature Genetics, 28, 173–177.

Keefer C L, Pant D, Blomberg L, Talbot N C. 2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Animal Reproduction Science, 98, 147–168.

Kijas J W, McCulloch R, Edwards J E, Oddy V H, Lee S H, van der Werf J. 2007. Evidence for multiple alleles effecting muscling and fatness at the ovine GDF8 locus. BMC Genetics, 8, 80.

Kim D, Bae S, Park J, Kim E, Kim S, Yu H R, Hwang J, Kim J I, Kim J S. 2015. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nature Methods, 12, 237–243.

Kim Y G, Cha J, Chandrasegaran S. 1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 93, 1156–1160.

Komor A C, Badran A H, Liu D R. 2017. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 168, 20–36.

Lai L, Kang J X, Li R, Wang J, Witt W T, Yong H Y, Hao Y, Wax D M, Murphy C N, Rieke A, Samuel M, Linville M L, Korte S W, Evans R W, Starzl T E, Prather R S, Dai Y. 2006. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 24, 435–436.

Lai S, Wei S, Zhao B, Ouyang Z, Zhang Q, Fan N, Liu Z, Zhao Y, Yan Q, Zhou X, Li L, Xin J, Zeng Y, Lai L, Zou Q. 2016. Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS ONE, 11, e0146562.

Laible G, Wei J, Wagner S. 2015. Improving livestock for agriculture - technological progress from random transgenesis to precision genome editing heralds a new era. Journal of Biotechnology, 10, 109–120.

Lavitrano M, Forni M, Varzi V, Pucci L, Bacci M L, Di Stefano C, Fioretti D, Zoraqi G, Moioli B, Rossi M, Lazzereschi D, Stoppacciaro A, Seren E, Alfani D, Cortesini R, Frati L. 1997. Sperm-mediated gene transfer: Production of pigs transgenic for a human regulator of complement activation. Transplantation Proceedings, 29, 3508–3509.

Li F, Li Y, Liu H, Zhang H, Liu C, Zhang X, Dou H, Yang W, Du Y. 2014. Production of GHR double-allelic knockout Bama pig by TALENs and handmade cloning. Hereditas (Beijing), 36, 903–911. (in Chinese)

Li P, Estrada J L, Burlak C, Montgomery J, Butler J R, Santos R M, Wang Z Y, Paris L L, Blankenship R L, Downey S M, Tector M, Tector A J. 2015. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation, 22, 20–31.

Lillico S G, Proudfoot C, Carlson D F, Stverakova D, Neil C, Blain C, King T J, Ritchie W A, Tan W, Mileham A J, McLaren D G, Fahrenkrug S C, Whitelaw C B. 2013. Live pigs produced from genome edited zygotes. Scientific Reports, 3, 2847.

Lin J, Arnold H B, Della-Fera M A, Azain M J, Hartzell D L, Baile C A. 2002. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochemical and Biophysical Research Communications, 291, 701–706.

Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S, Jing B, Si C, Lin Q, Chen X, Lin H, Pu X, Wang Y, Qin B, Wang F, Wang H, et al. 2014. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell, 14, 323–328.

Lo D, Pursel V, Linton P J, Sandgren E, Behringer R, Rexroad C, Palmiter R D, Brinster R L. 1991. Expression of mouse IgA by transgenic mice, pigs and sheep. European Journal of Immunology, 21, 1001–1006.

Lu T, Song Z, Li Q, Li Z, Wang M, Liu L, Tian K, Li N. 2017. Overexpression of histone deacetylase 6 enhances resistance to porcine reproductive and respiratory syndrome virus in pigs. PLoS ONE, 12, e0169317.

Ma J, Li Q, Li Y, Wen X, Li Z, Zhang Z, Zhang J, Yu Z, Li N. 2016. Expression of recombinant human alpha-lactalbumin in milk of transgenic cloned pigs is sufficient to enhance intestinal growth and weight gain of suckling piglets. Gene, 584, 7–16.

Marchitelli C, Savarese M C, Crisa A, Nardone A, Marsan P A, Valentini A. 2003. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mammalian Genome, 14, 392–395.

McPherron A C, Lawler A M, Lee S J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387, 83–90.

Meuwissen T H, Hayes B J, Goddard M E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.

Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G, Ostrander E A. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 3, e79.

Muller M, Brenig B, Winnacker E L, Brem G. 1992. Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene, 121, 263–270.

Mussolino C, Cathomen T. 2013. RNA guides genome engineering. Nature Biotechnology, 31, 208–209.

Nottle M, Nagashima H, Verma P, Du Z, Grupen C, Mcllfatrick S, Ashman R, Harding M, Giannakis C, Wigley P, Lyons I, Harrison D, Luxford B, Campbell R, Crawford R, Robins A. 1999. Production and analysis of transgenic pigs containing a metallothionein porcine growth hormone gene construct. In: Murray J, Anderson G, Oberbauer A, McGloughlin M, eds., Transgenic Animals in Agriculture. CAMI Publ, New York, USA. pp. 145–156.

Palgrave C J, Gilmour L, Lowden C S, Lillico S G, Mellencamp M A, Whitelaw C B. 2011. Species-specific variation in RELA underlies differences in NF-kappaB activity: A potential role in African swine fever pathogenesis. Journal of Virology, 85, 6008–6014.

Pan D, Zhang L, Zhou Y, Feng C, Long C, Liu X, Wan R, Zhang J, Lin A, Dong E, Wang S, Xu H, Chen H. 2010. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. Science China (Life Sciences), 53, 517–523.

Pena R N, Ros-Freixedes R, Tor M, Estany J. 2016. Genetic marker discovery in complex traits: A field example on fat content and composition in pigs. International Journal of Molecular Sciences, 17, 2100.

Peng J, Wang Y, Jiang J, Zhou X, Song L, Wang L, Ding C, Qin J, Liu L, Wang W, Liu J, Huang X, Wei H, Zhang P. 2015. Production of human albumin in pigs through crispr/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Scientific Reports, 5, 16705.

Pereyra-Bonnet F, Fernandez-Martin R, Olivera R, Jarazo J, Vichera G, Gibbons A, Salamone D. 2008. A unique method to produce transgenic embryos in ovine, porcine, feline, bovine and equine species. Reproduction Fertility and Development, 20, 741–749.

Petersen B, Niemann H. 2015. Molecular scissors and their application in genetically modified farm animals. Transgenic Research, 24, 381–396.

Polejaeva I A, Chen S H, Vaught T D, Page R L, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares D L, Colman A, Campbell K H. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407, 86–90.

Popescu L, Gaudreault N N, Whitworth K M, Murgia M V, Nietfeld J C, Mileham A, Samuel M, Wells K D, Prather R S, Rowland R R. 2017. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, georgia 2007/1. Virology, 501, 102–106.

Prather R S, Lorson M, Ross J W, Whyte J J, Walters E. 2013. Genetically engineered pig models for human diseases. Annual Review of Animal Biosciences, 1, 203–219.

Prather R S, Rowland R R, Ewen C, Trible B, Kerrigan M, Bawa B, Teson J M, Mao J, Lee K, Samuel M S, Whitworth K M, Murphy C N, Egen T, Green J A. 2013. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. Journal of Virology, 87, 9538–9546.

Pursel V G, Hammer R E, Bolt D J, Palmiter R D, Brinster R L. 1990. Integration, expression and germ-line transmission of growth-related genes in pigs. Journal of Reproduction and Fertility, 41, 77–87.

Pursel V G, Rexroad Jr C E. 1993. Recent progress in the transgenic modification of swine and sheep. Molecular Reproduction and Development, 36, 251–254.

Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D, Chen Y, An X, Li K, Cui W. 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 5, 14435.

Ramos A M, Crooijmans R P, Affara N A, Amaral A J, Archibald A L, Beever J E, Bendixen C, Churcher C, Clark R, Dehais P, Hansen M S, Hedegaard J, Hu Z L, Kerstens H H, Law A S, Megens H J, Milan D, Nonneman D J, Rohrer G A, Rothschild M F, et al. 2009. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One, 4, e6524.

Redel B K, Prather R S. 2016. Meganucleases revolutionize the production of genetically engineered pigs for the study of human diseases. Toxicologic Pathology, 44, 428–433.

Ren X, Yang Z, Mao D, Chang Z, Qiao H H, Wang X, Sun J, Hu Q, Cui Y, Liu L P, Ji J Y, Xu J, Ni J Q. 2014. Performance of the Cas9 nickase system in Drosophila melanogaster. G3 - Genes Genomes Genetics, 4, 1955–1962.

Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S, Ouyang H, Chen-Tsai R Y, Li K. 2015. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports, 5, 14253.

Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y, Kano K, Taguchi Y, Mikami K, Hirabayashi M, Kashiwazaki N, Hosoi Y, Murata N, Iritani A. 2004. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proceedings of the National Academy of Sciences of the United States of America, 101, 6361–6366.

Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W, Dean W. 2003. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Current Biology, 13, 1116–1121.

Schafer M J, Atkinson E J, Vanderboom P M, Kotajarvi B, White T A, Moore M M, Bruce C J, Greason K L, Suri R M, Khosla S, Miller J D, Bergen H R, LeBrasseur N K. 2016. Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metabolism, 23, 1207–1215.

Schuelke M, Wagner K R, Stolz L E, Hubner C, Riebel T, Komen W, Braun T, Tobin J F, Lee S J. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. New England Journal of Medicine, 350, 2682–2688.

Song J, Zhong J, Guo X, Chen Y, Zou Q, Huang J, Li X, Zhang Q, Jiang Z, Tang C, Yang H, Liu T, Li P, Pei D, Lai L. 2013. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs. Cell Research, 23, 1059–1062.

Tan W, Proudfoot C, Lillico S G, Whitelaw C B. 2016. Gene targeting, genome editing: From Dolly to editors. Transgenic Research, 25, 273–287.

Tanihara F, Takemoto T, Kitagawa E, Rao S, Do L T, Onishi A, Yamashita Y, Kosugi C, Suzuki H, Sembon S, Suzuki S, Nakai M, Hashimoto M, Yasue A, Matsuhisa M, Noji S, Fujimura T, Fuchimoto D, Otoi T. 2016. Somatic cell reprogramming-free generation of genetically modified pigs. Science Advances, 2, e1600803.

Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153, 910–918.

Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D. 2015. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific Reports, 5, 16623.

Wang X, Cao C, Huang J, Yao J, Hai T, Zheng Q, Wang X, Zhang H, Qin G, Cheng J, Wang Y, Yuan Z, Zhou Q, Wang H, Zhao J. 2016. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Scientific Reports, 6, 20620.

Wang X, Zhou J, Cao C, Huang J, Hai T, Wang Y, Zheng Q, Zhang H, Qin G, Miao X, Wang H, Cao S, Zhou Q, Zhao J. 2015. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Scientific Reports, 5, 13348.

Weidle U H, Lenz H, Brem G. 1991. Genes encoding a mouse monoclonal antibody are expressed in transgenic mice, rabbits and pigs. Gene, 98, 185–191.

Wells K D, Bardot R, Whitworth K M, Trible B R, Fang Y, Mileham A, Kerrigan M A, Samuel M S, Prather R S, Rowland R R. 2017. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. Journal of Virology, 91, e01521–e01536.

Wells K D, Prather R S. 2017. Genome-editing technologies to improve research, reproduction, and production in pigs. Molecular Reproduction and Development, 84, 1012–1017.

Whitworth K M, Lee K, Benne J A, Beaton B P, Spate L D, Murphy S L, Samuel M S, Mao J, O’Gorman C, Walters E M, Murphy C N, Driver J, Mileham A, McLaren D, Wells K D, Prather R S. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction, 91, 78.

Whitworth K M, Rowland R R, Ewen C L, Trible B R, Kerrigan M A, Cino-Ozuna A G, Samuel M S, Lightner J E, McLaren D G, Mileham A J, Wells K D, Prather R S. 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 34, 20–22.

Whyte J J, Zhao J, Wells K D, Samuel M S, Whitworth K M, Walters E M, Laughlin M H, Prather R S. 2011. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular Reproduction and Development, 78, 2.

Xu P, Li Q, Jiang K, Yang Q, Bi M, Jiang C, Wang X, Wang C, Li L, Qiao C, Gong H, Xing Y, Ren J. 2016. BAC mediated transgenic Large White boars with FSHalpha/beta genes from Chinese Erhualian pigs. Transgenic Research, 25, 693–709.

Yan Q, Yang H, Yang D, Zhao B, Ouyang Z, Liu Z, Fan N, Ouyang H, Gu W, Lai L. 2014. Production of transgenic pigs over-expressing the antiviral gene Mx1. Cell Regeneration (Lond), 3, 11.

Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen Y E, Lai L. 2011. Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Research, 21, 979–982.

Yang X, Cheng Y T, Tan M F, Zhang H W, Liu W Q, Zou G, Zhang L S, Zhang C Y, Deng S M, Yu L, Hu X Y, Li L, Zhou R. 2015. Overexpression of porcine beta-defensin 2 enhances resistance to actinobacillus pleuropneumoniae infection in pigs. Infection and Immunity, 83, 2836–2843.

Yao J, Huang J, Zhao J. 2016. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Human Genetics, 135, 1093–1105.

Yu S, Luo J, Song Z, Ding F, Dai Y, Li N. 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 21, 1638–1640.

Zetsche B, Gootenberg J S, Abudayyeh O O, Slaymaker I M, Makarova K S, Essletzbichler P, Volz S E, Joung J, van der Oost J, Regev A, Koonin E V, Zhang F. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771.

Zhou X, Wang L, Du Y, Xie F, Li L, Liu Y, Liu C, Wang S, Zhang S, Huang X, Wang Y, Wei H. 2016. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-Induced homology-directed repair in zygotes. Human Mutation, 37, 110–118.
[1] WANG Peng-fei, WANG Ming, SHI Zhi-bin, SUN Zhen-zhao, WEI Li-li, LIU Zai-si, WANG Shi-da, HE Xi-jun, WANG Jing-fei. Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs[J]. >Journal of Integrative Agriculture, 2022, 21(3): 819-825.
[2] WANG Xiao-bo, WU Nan, CAI Rui-jie, GENG Wei-na, XU Xiao-yan. Changes in speciation, mobility and bioavailability of Cd, Cr and As during the transformation process of pig manure by black soldier fly larvae (Hermetia illucens)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1157-1166.
[3] ZHU Mei-chen, HU Ran, ZHAO Hui-yan, TANG Yun-shan, SHI Xiang-tian, JIANG Hai-yan, ZHANG Zhi-yuan, FU Fu-you, XU Xin-fu, TANG Zhang-lin, LIU Lie-zhao, LU Kun, LI Jia-na, QU Cun-min. Identification of quantitative trait loci and candidate genes controlling seed pigments of rapeseed[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2862-2879.
[4] Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng. Crop photosynthetic response to light quality and light intensity[J]. >Journal of Integrative Agriculture, 2021, 20(1): 4-23.
[5] LI Cen-cen, YU Shu-long, REN Hai-feng, WU Wei, WANG Ya-ling, HAN Qiu, XU Hai-xia, XU Yong-jie, ZHANG Peng-peng. Identification and functional prediction of long intergenic noncoding RNAs in fetal porcine longissimus dorsi muscle[J]. >Journal of Integrative Agriculture, 2021, 20(1): 201-211.
[6] DAI Xiao-wen, Zhanli SUN, Daniel MÜLLER. Driving factors of direct greenhouse gas emissions from China’s pig industry from 1976 to 2016[J]. >Journal of Integrative Agriculture, 2021, 20(1): 319-329.
[7] NAN Jiu-hong, YIN Li-lin, TANG Zhen-shuang, CHEN Jian-hai, ZHANG Jie, WANG Hai-yan, DU Xiao-yong, LIU Xiang-dong . Genetic parameter estimation and genome-wide association study (GWAS) of red blood cell count at three stages in a Duroc×Erhualian pig population[J]. >Journal of Integrative Agriculture, 2020, 19(3): 793-799.
[8] ZHUO Ni, JI Chen, DING Jing-yu. Pig farmers’ willingness to recover their production under COVID-19 pandemic shock in China-Empirical evidence from a farm survey[J]. >Journal of Integrative Agriculture, 2020, 19(12): 2891-2902.
[9] Aejaz Ahmad DAR, Susheel SHARMA, Reetika MAHAJAN, Muntazir MUSHTAQ, Ankila SALATHIA, Shahid AHAMAD, Jag Paul SHARMA. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches[J]. >Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[10] ZHENG Yao, CHEN Cai, CHEN Wei, WANG Xiao-yan, WANG Wei, GAO Bo, Klaus WIMMERS, MAO Jiu-de, SONG Cheng-yi. Two new SINE insertion polymorphisms in pig Vertnin (VRTN) gene revealed by comparative genomic alignment[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2514-2522.
[11] WANG Man, YU Bing, HE Jun, YU Jie, LUO Yu-heng, LUO Jun-qiu, MAO Xiang-bin, CHEN Dai-wen. The toxicological effect of dietary excess of saccharicterpenin, the extract of camellia seed meal, in piglets[J]. >Journal of Integrative Agriculture, 2020, 19(1): 211-224.
[12] ZENG Zhu, JIANG Jun-jie, YU Jie, MAO Xiang-bing, YU Bing, CHEN Dai-wen. Effect of dietary supplementation with mulberry (Morus alba L.) leaves on the growth performance, meat quality and antioxidative capacity of finishing pigs[J]. >Journal of Integrative Agriculture, 2019, 18(1): 143-151.
[13] SHAN Nan, LI Hu, LI Jian-zheng, Ee Ling Ng, MA Yan, WANG Li-gang, CHEN Qing. A major pathway for carbon and nitrogen losses- Gas emissions during storage of solid pig manure in China[J]. >Journal of Integrative Agriculture, 2019, 18(1): 190-200.
[14] JI Chen, CHEN Qin, Jacques Trienekens, WANG Hai-tao. Determinants of cooperative pig farmers' safe production behaviour in China – Evidences from perspective of cooperatives' services[J]. >Journal of Integrative Agriculture, 2018, 17(10): 2345-2355.
[15] LU Yun-feng, CHEN Ji-bao, ZHANG Bo, LI Qing-gang, WANG Zhi-xiu, ZHANG Hao, WU Ke-liang . Cloning, expression, and polymorphism of the ECI1 gene in various pig breeds[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1789-1799.
No Suggested Reading articles found!