Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3311-3327    DOI: 10.1016/j.jia.2024.05.025
Section 1: Cotton functional genomics Advanced Online Publication | Current Issue | Archive | Adv Search |
Upregulation of the glycine-rich protein-encoding gene GhGRPL enhances plant tolerance to abiotic and biotic stressors by promoting secondary cell wall development
Wanting Yu1*, Yonglu Dai1*, Junmin Chen1, Aimin Liang1, Yiping Wu1, Qingwei Suo1, Zhong Chen1, Xingying Yan1, Chuannan Wang1, Hanyan Lai1, Fanlong Wang1, Jingyi Zhang1, Qinzhao Liu1, Yi Wang1, Yaohua Li1, Lingfang Ran1, Jie Xiang1, Zhiwu Pei1, Yuehua Xiao1, 2, 3, 4#, Jianyan Zeng1, 2, 3, 4#
1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
2 Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
3 Chongqing Key Laboratory of Crop Molecular Improvement, Chongqing 400715, China
4 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
非生物和生物胁迫因子均对植物的生存、生物量生成和作物产量产生不利影响。随着全球可耕地的减少和全球变暖影响的加剧,这些胁迫因子对农业生产力的冲击将会日益严重。目前,全面增强植物对非生物和生物胁迫因子的抗性仍然充满挑战。次生壁在增强植物的抗胁迫能力中起着至关重要的作用。为了通过遗传操纵次生壁增加植物的抗胁迫能力,我们从棉花纤维中克隆了一个名为类富甘氨酸蛋白(GhGRPL)的细胞壁蛋白,该蛋白在纤维细胞次生壁合成期间特异性表达。值得注意的是,该蛋白质与其拟南芥同源蛋白AtGRP不同,其富甘氨酸结构域缺失部分甘氨酸残基。GhGRPL参与次生壁的沉积,上调GhGRPL的表达可以促进木质素的积累,从而增加次生壁的厚度,进而增强植物对包括干旱和盐胁迫在内的非生物胁迫因子以及包括大丽轮枝菌(V. dahliae)侵染在内的生物胁迫的抵抗力。相反,干扰棉花中GhGRPL的表达会减少木质素的积累并削弱这种抗性。总之,我们的研究结果揭示了GhGRPL在调控次生壁发育中的作用,特别是通过影响木质素的沉积,从而增强细胞壁的坚固性和不透水性方面。这些发现突显了将来利用GhGRPL在提高植物应对非生物和生物胁迫抗性中的前景。


Abstract  
Abiotic and biotic stressors adversely affect plant survival, biomass generation, and crop yields.  As the global availability of arable land declines and the impacts of global warming intensify, such stressors may have increasingly pronounced effects on agricultural productivity.  Currently, researchers face the overarching challenge of comprehensively enhancing plant resilience to abiotic and biotic stressors.  The secondary cell wall plays a crucial role in bolstering the stress resistance of plants.  To increase plant resistance to stress through genetic manipulation of the secondary cell wall, we cloned a cell wall protein designated glycine-rich protein-like (GhGRPL) from cotton fibers, and found that it is specifically expressed during the period of secondary cell wall biosynthesis.  Notably, this protein differs from its Arabidopsis homolog, AtGRP, since its glycine-rich domain is deficient in glycine residues.  GhGRPL is involved in secondary cell wall deposition.  Upregulation of GhGRPL enhances lignin accumulation and, consequently, the thickness of the secondary cell walls, thereby increasing the plant’s resistance to abiotic stressors, such as drought and salinity, and biotic threats, including Verticillium dahliae infection.  Conversely, interference with GhGRPL expression in cotton reduces lignin accumulation and compromises that resistance.  Taken together, our findings elucidate the role of GhGRPL in regulating secondary cell wall development through its influence on lignin deposition, which, in turn, reinforces cell wall robustness and impermeability.  These findings highlight the promising near-future prospect of adopting GhGRPL as a viable, effective approach for enhancing plant resilience to abiotic and biotic stress factors.


Keywords:  glycine-rich protein-like       secondary cell wall        abiotic stress        biotic stress        stress resistance  
Received: 04 January 2024   Accepted: 23 April 2024
Fund: 
This work was supported by the Special Fund for the Youth Team of the Southwest Universities, China (SWU-XJPY 202306), the Fundamental Research Funds for the Central Universities, China (SWU-KR23009), and the National Natural Sciences Foundation of China (U2003209 and 31871539).

About author:  #Correspondence Jianyan Zeng, Tel: +86-23-68251883, E-mail: zengjianyan@swu.edu.cn; Yuehua Xiao, Tel: +86-23-68250042, E-mail: xiaoyuehua@swu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Wanting Yu, Yonglu Dai, Junmin Chen, Aimin Liang, Yiping Wu, Qingwei Suo, Zhong Chen, Xingying Yan, Chuannan Wang, Hanyan Lai, Fanlong Wang, Jingyi Zhang, Qinzhao Liu, Yi Wang, Yaohua Li, Lingfang Ran, Jie Xiang, Zhiwu Pei, Yuehua Xiao, Jianyan Zeng. 2024. Upregulation of the glycine-rich protein-encoding gene GhGRPL enhances plant tolerance to abiotic and biotic stressors by promoting secondary cell wall development. Journal of Integrative Agriculture, 23(10): 3311-3327.

Agarwal P K, Agarwal P, Reddy M K, Sopory S K. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports25, 1263–1274.

Aini N, Wu Y L, Pan Z Y, An Q S, Shui G L, Shao P X, Yang D Y, Lin H R, Tang B H, Wei X, You C Y, Zhu L F, Zhang D W, Lin Z X, Nie X H. 2023. Cotton ethylene response factor GhERF91 involved in the defense against Verticillium dahliaeJournal of Integrative Agriculture10, 3328–3342.

Akhlaghi M, Keykhasaber M, Barjasteh A, Landa B B, Rafiei V. 2021. First report of Verticillium wilt caused by Verticillium dahliae on russian olive (Elaeagnus angustifolia) in Iran. Plant Disease105, 1213.

Babula-Skowrońska D, Ludwików A, Cieśla A, Olejnik A, Cegielska-Taras T, Bartkowiak-Broda I, Sadowski J. 2015. Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress. Plant Molecular Biology88, 445–457.

Baillo E H, Kimotho R N, Zhang Z B, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes10, 771.

Balazadeh S, Siddiqui H, Allu A D, Matallana-Ramirez L P, Caldana C, Mehrnia M, Zanor M I, Köhler B, Mueller-Roeber B. 2010. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. The Plant Journal62, 250–264.

Bhat R G, Subbarao K V. 1999. Host range specificity in Verticillium dahliaePhytopathology89, 1218–1225.

Bidlack J. 1992. Molecular structure and component integration of secondary cell walls in plants. Proceedings of the Oklahoma Academy of Science72, 51–56.

Bonello P, Blodgett J T. 2003. Pinus nigraSphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiological and Molecular Plant Pathology63, 249–261.

Braidwood L, Breuer C, Sugimoto K. 2014. My body is a cage: Mechanisms and modulation of plant cell growth. New Phytologist201, 388–402.

Buendgen M R, Coors J G, Grombacher A W, Russell W A. 1990. European corn borer resistance and cell wall composition of three maize populations. Crop Science30, 505–510.

Burland T G. 2000. DNASTAR’s Lasergene sequence analysis software. In: Bioinformatics Methods and Protocols. Springer, New York, USA. pp. 71–91.

Cesarino I. 2019. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Current Opinion in Biotechnology56, 209–214.

Chen A P, Zhong N Q, Qu Z L, Wang F, Liu N, Xia G X. 2007. Root and vascular tissue-specific expression of glycine-rich protein AtGRP9 and its interaction with AtCAD5, a cinnamyl alcohol dehydrogenase, in Arabidopsis thalianaJournal of Plant Research120, 337–343.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thalianaThe Plant Journal16, 735–743.

Condit C M, Meagher R B. 1986. A gene encoding a novel glycine-rich structural protein of petunia. Nature323, 178–181.

Cosgrove D J. 2016. Catalysts of plant cell wall loosening. F1000Research5, 119.

Cosgrove D J, Jarvis M C. 2012. Comparative structure and biomechanics of plant primary and secondary cell walls. Frontiers in Plant Science3, 204.

Czolpinska M, Rurek M. 2018. Plant glycine-rich proteins in stress response: An emerging, still prospective story. Frontiers in Plant Science9, 302.

Dong S M, Liang X, Li Z B, Jie S, Yan H B, Li S X, Liao W B, Ming P. 2022. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression. Journal of Integrative Agriculture21, 2588–2602.

Ellendorff U, Fradin E F, De Jonge R, Thomma B P. 2009. RNA silencing is required for arabidopsis defence against Verticillium wilt disease. Journal of Experimental Botany60, 591–602.

Fradin E F, Thomma B P. 2006. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrumMolecular Plant Pathology7, 71–86.

Gao W, Long L, Xu L, Lindsey K, Zhang X L, Zhu L F. 2016. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton. Journal of Integrative Plant Biology58, 503–513.

Gao X Q, Wheeler T, Li Z H, Kenerley C M, He P, Shan L B. 2011. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. The Plant Journal66, 293–305.

Giarola V, Krey S, von den Driesch B, Bartels D. 2016. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration. New Phytologist210, 535−550.

Humphreys J M, Chapple C. 2002. Rewriting the lignin roadmap. Current Opinion in Plant Biology5, 224−229.

Jie Z, Wei H, Li Y X, He J Q, Zhu H H, Zhou Z G. 2020. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture19, 495–508.

Kim H J, Triplett B A. 2001. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiology127, 1361–1366.

Kim J Y, Park S J, Jang B, Jung C H, Ahn S J, Goh C H, Cho K, Han O, Kang H. 2007. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. The Plant Journal50, 439–451.

Kim W Y, Ali Z, Park H J, Park S J, Cha J Y, Perez-Hormaeche J, Quintero F J, Shin G, Kim M R, Qiang Z. 2013. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in ArabidopsisNature Communications4, 1352.

Klosterman S J, Atallah Z K, Vallad G E, Subbarao K V. 2009. Diversity, pathogenicity, and management of Verticillium species. Annual Review of Phytopathology47, 39–62.

Ko H Y, Ho L H, Neuhaus H E, Guo W J. 2021. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiology187, 2230–2245.

Kwak K J, Kim H S, Jang H Y, Kang H, Ahn S J. 2016. Diverse roles of glycine-rich RNA-binding protein 7 in the response of camelina (Camelina sativa) to abiotic stress. Acta Physiologiae Plantarum38, 1–11.

Lee H J, Kim J S, Yoo S J, Kang E Y, Han S H, Yang K Y, Kim Y C, Gardener B M, Kang H. 2012. Different roles of glycine-rich RNA-binding protein7 in plant defense against Pectobacterium carotovorumBotrytis cinerea, and tobacco mosaic viruses. Plant Physiology and Biochemistry60, 46–52.

Li K, Yang X, Liu X G, Hu X J, Wu Y J, Wang Q, Ma F Q, Li S Q, Wang H W, Liu Z F, Huang C L. 2022. QTL analysis of the developmental changes in cell wall components and forage digestibility in maize (Zea mays L.). Journal of Integrative Agriculture21, 3501–3513.

Li W, Tian Z X, Yu D Q. 2015. WRKY13 acts in stem development in Arabidopsis thalianaPlant Science236, 205–213.

Lin B R, Zhuo K, Chen S Y, Hu L L, Sun L H, Wang X H, Zhang L H, Liao J L. 2016. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytologist209, 1159–1173.

Luo X, Bai X, Sun X L, Zhu D, Liu B H, Ji W, Cai H, Cao L, Wu J, Hu M R. 2013. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of Experimental Botany64, 2155–2169.

Mangeon A, Junqueira R M, Sachetto-Martins G. 2010. Functional diversity of the plant glycine-rich proteins superfamily. Plant Signaling & Behavior5, 99–104.

Mengiste T, Chen X, Salmeron J, Dietrich R. 2003. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in ArabidopsisThe Plant Cell15, 2551–2565.

Miedes E, Vanholme R, Boerjan W, Molina A. 2014. The role of the secondary cell wall in plant resistance to pathogens. Frontiers in Plant Science5, 358.

Mota T R, Oliveira D M, Morais G R, Marchiosi R, Buckeridge M S, Ferrarese-Filho O, dos Santos W D. 2019. Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Industrial Crops and Products140, 111657.

Moura J C M S, Bonine C A V, de Oliveira Fernandes Viana J, Dornelas M C, Mazzafera P. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology52, 360–376.

Nakashima K, Tran L S P, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal51, 617−630.

Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science5, 170.

Nicholas K B. 1997. Genedoc: Analysis and visualization of genetic variation. Embnew News4, 14.

Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N. 2005. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes & Genetic Systems80, 135–139.

Pandey P, Irulappan V, Bagavathiannan M V, Senthil-Kumar M. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science8, 537.

Quintero F J, Ohta M, Shi H Z, Zhu J K, Pardo J M. 2002. Reconstitution in yeast of the arabidopsis SOS signaling pathway for NA+ homeostasis. Proceedings of the National Academy of Sciences of the United States of America99, 9061–9066.

Ralph J, Lapierre C, Boerjan W. 2019. Lignin structure and its engineering. Current Opinion in Biotechnology56, 240–249.

Ryser U, Schorderet M, Guyot R, Keller B. 2004. A new structural element containing glycine-rich proteins and rhamnogalacturonan I in the protoxylem of seed plants. Journal of Cell Science117, 1179–1190.

Sachetto-Martins G, Franco L O, de Oliveira D E. 2000. Plant glycine-rich proteins: A family or just proteins with a common motif? Biochimica et Biophysica Acta1492, 1–14.

Sakamoto S, Somssich M, Nakata M T, Unda F, Atsuzawa K, Kaneko Y, Wang T, Bågman A M, Gaudinier A, Yoshida K. 2018. Complete substitution of a secondary cell wall with a primary cell wall in ArabidopsisNature Plants4, 777–783.

Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Functional analysis of an arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell18, 1292–1309.

Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. The Plant Cell13, 61–72.

Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S. 2016. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants2, 1−9.

Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany58, 221–227.

Tenhaken R. 2015. Cell wall remodeling under abiotic stress. Frontiers in Plant Science5, 771.

Ueki S, Citovsky V. 2002. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nature Cell Biology4, 478–486.

Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology153, 895–905.

Walter M H 1992. Regulation of lignification in defense. In: Boller T, Meins F, eds., Genes Involved in Plant Defense. Springer, Vienna. pp. 327–352.

Wang J, Ma Z T, Tang B, Yu H Y, Tang Z Z, Bu T L, Wu Q, Chen H. 2021. Tartary buckwheat (Fagopyrum tataricum) NAC transcription factors FTNAC16 negatively regulates of POD cracking and salinity tolerant in ArabidopsisInternational Journal of Molecular Sciences22, 3197.

Wang T, Dong Q, Wang W, Chen S, Cheng Y, Tian H, Li X, Hussain S, Wang L, Gong L. 2021. Evolution of AITR family genes in cotton and their functions in abiotic stress tolerance. Plant Biology23, 58–68.

Wang Y, Yu W T, Ran L F, Chen Z, Wang C N, Dou Y, Qin Y Y, Suo Q W, Li Y H, Zeng J Y, Min L A, Lu D Y, Ping W Y, Fen O X, Hua X Y. 2021. DELLA-NAC interactions mediate GA signaling to promote secondary cell wall formation in cotton stem. Frontiers in Plant Science12, 655127.

Wen Y Z, Peng H, BAI X H, Zhang H Z, Zhang Y F, Yu J N. 2024. Strigolactones modulate cotton fiber elongation and secondary cell wall thickening. Journal of Integrative Agriculture23, 1850–1863.

Wolf S, Hématy K, Höfte H. 2012. Growth control and cell wall signaling in plants. Annual Review of Plant Biology63, 381–407.

Wu J Z, Zhang J, Ge Z M, Xing L W, Han S Q, Chen S, Kong F T. 2021. Impact of climate change on maize yield in China from 1979 to 2016. Journal of Integrative Agriculture20, 289–299.

Wu Y R, Deng Z Y, Lai J B, Zhang Y Y, Yang C P, Yin B J, Zhao Q Z, Zhang L, Li Y, Yang C W. 2009. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research19, 1279–1290.

Xiao B Z, Chen X, Xiang C B, Tang N, Zhang Q F, Xiong L Z. 2009. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Molecular Plant2, 73–83.

Xu L, Zhang W W, He X, Liu M, Zhang K, Shaban M, Sun L Q, Zhu J C, Luo Y J, Yuan D J. 2014. Functional characterization of cotton genes responsive to Verticillium dahliae through bioinformatics and reverse genetics strategies. Journal of Experimental Botany65, 6679–6692.

Yang D H, Kwak K J, Kim M K, Park S J, Yang K Y, Kang H. 2014. Expression of arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Science214, 106–112.

Zeng J Y, Yan X Y, Bai W Q, Zhang M, Chen Y, Li X B, Hou L, Zhao J, Ding X Y, Liu R C, Wang F L, Ren H, Zhang J Y, Ding B, Liu H R, Xiao Y H, Pei Y. 2022. Carpel-specific down-regulation of GhCKXs in cotton significantly enhances seed and fiber yield. Journal of Experimental Botany73, 6758–6772.

Zeng J Y, Yao D, Luo M, Ding L L, Wang Y, Yan X Y, Ye S, Wang C N, Wu Y P, Zhang J Y, Li Y H, Ran L F, Dai Y L, Chen Y, Wang F L, Lai H Y, Liu N, Fang N J, Pei Y, Xiao Y H. 2023. Fiber-specific increase of carotenoid content promotes cotton fiber elongation by increasing abscisic acid and ethylene biosynthesis. The Crop Journal11, 774–784.

Zeng J Y, Zhang M, Hou L, Bai W Q, Yan X Y, Hou N, Wang H X, Huang J, Zhao J, Pei Y. 2019. Cytokinin inhibits cotton fiber initiation by disrupting PIN3a-mediated asymmetric accumulation of auxin in the ovule epidermis. Journal of Experimental Botany70, 3139–3151.

Zhu T, Liang C Z, Meng Z G, Sun G Q, Meng Z H, Guo S D, Zhang R. 2017. CottonFGD: An integrated functional genomics database for cotton. BMC Plant Biology17, 101.

[1] DU Qiao-li, FANG Yuan-peng, JIANG Jun-mei, CHEN Mei-qing, LI Xiang-yang, XIE Xin. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3540-3555.
[2] LIU Ting-ting, XU Miao-ze, GAO Shi-qi, ZHANG Yang, HU Yang, JIN Peng, CAI Lin-na, CHENG Ye, CHEN Jian-ping, YANG Jian, ZHONG Kai-li. Genome-wide identification and analysis of the regulation wheat DnaJ family genes following wheat yellow mosaic virus infection[J]. >Journal of Integrative Agriculture, 2022, 21(1): 153-169.
No Suggested Reading articles found!