|
|
|
Effect of the gene silencing of phosphorus transporters on phosphorus absorption across primary cultured duodenal epithelial cell monolayers of chick embryos |
LI Ting-ting1*, LU Na2*, SHAO Yu-xin2, ZHANG Li-yang2, LU Lin2, LIU Zong-ping3, LUO Xu-gang1, LIAO Xiu-dong2 |
1 Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R.China
2 Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
3 College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P.R.China |
|
|
摘要
本研究旨在确定II b型钠磷协同转运载体(NaP-IIb)和无机磷转运载体2(PiT2)是否直接参与原代培养肉鸡鸡胚十二指肠上皮细胞磷吸收。针对NaP-IIb和PiT2基因设计小干扰RNA(siRNA)序列,合成并转染至原代培养肉鸡鸡胚十二指肠细胞,通过抑制效率分析筛选出对NaP-IIb和PiT2基因干扰有效的siRNAs,用于后续磷吸收试验。转染有效抑制NaP-IIb或PiT2的siRNA至原代培养肉鸡鸡胚十二指肠上皮细胞,待Transwell培养板上的细胞汇合成单层后,将磷转运载体基因(NaP-IIb或PiT2)沉默细胞或未转染细胞在含有0或0.25 mM磷(以KH2PO4形式引入)的吸收培养基中孵育,以检测十二指肠上皮细胞对磷的吸收。结果表明,si-1372和si-890分别为抑制NaP-IIb和PiT2基因表达的有效siRNA。与无磷组相比,添加磷可显著提高(P=0.065)原代培养肉鸡鸡胚十二指肠上皮细胞PiT2蛋白丰度,并增强(P<0.0001)其磷吸收。另外,NaP-IIb沉默显著降低(P=0.07)原代培养肉鸡鸡胚十二指肠上皮细胞磷吸收,但PiT2沉默对其并无影响(P=0.345)。综上所述,NaP-IIb可能直接参与肉鸡十二指肠上皮细胞磷吸收,而PiT2并未直接参与。
Abstract The aim of the study was to investigate whether phosphorus (P) transporters, type IIb sodium-dependent phosphate cotransporter (NaP-IIb) and inorganic phosphate transporter 2 (PiT2), were directly involved in P absorption across primary cultured duodenal epithelial cell monolayers of chick embryos. The siRNAs against NaP-IIb or PiT2 were designed, synthesized and transfected into primary cultured duodenal epithelial cells of chick embryos. Then, the inhibitory efficiency of siRNAs against NaP-IIb or PiT2 was analyzed, and the most efficacious siRNAs were selected to be used for subsequent P absorption experiments. Briefly, primary cultured duodenal epithelial cells of chick embryos were transfected with either NaP-IIb or PiT2 siRNAs and grown in confluent monolayers on transwell plates. The untransfected or transfected cell monolayers were then incubated in an uptake medium containing 0 or 0.25 mmol L–1 of P as KH2PO4 to measure the P absorption across duodenal epithelial cell monolayers. The results showed that among the siRNAs designed, si-1372 and si-890 were demonstrated to be the most effective in inhibiting the NaP-IIb and PiT2 expressions, respectively. Supplemental P increased (P=0.065) the protein abundance of PiT2 and enhanced (P<0.0001) P absorption in primary cultured duodenal epithelial cell of chick embryos. Furthermore, NaP-IIb silencing decreased (P=0.07) P absorption across duodenal epithelial cell monolayers, while PiT2 silencing had no effect (P=0.345). It is concluded that the NaP-IIb, but not PiT2, might be directly involved in the P absorption of chick duodenal epithelial cells.
|
Received: 19 February 2021
Accepted: 15 June 2021
|
Fund: This present work was supported by the Key Program of the National Natural Science Foundation of China (31630073), the National Natural Science Foundation of China (31472116), the National Key R&D Program of China (2017YFD0502200), the China Agriculture Research System of MOF and MARA (CARS-41), and the Agricultural Science and Technology Innovation Program (ASTIP-IAS09). |
About author: LI Ting-ting, E-mail: d150070@yzu.edu.cn; Correspondence LUO Xu-gang, Tel: +86-514-87976732, E-mail: wlysz@263.net; LIAO Xiu-dong, Tel: +86-10-62820866, E-mail: liaoxd56@163.com
* These authors contributed equally to the present study. |
Cite this article:
LI Ting-ting, LU Na, SHAO Yu-xin, ZHANG Li-yang, LU Lin, LIU Zong-ping, LUO Xu-gang, LIAO Xiu-dong.
2022.
Effect of the gene silencing of phosphorus transporters on phosphorus absorption across primary cultured duodenal epithelial cell monolayers of chick embryos. Journal of Integrative Agriculture, 21(7): 2076-2085.
|
Berndt T, Kumar R. 2009. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology, 24, 17–25.
Candeal E, Caldas Y A, Guillén N, Levi M, Sorribas V. 2017. Intestinal phosphate absorption is mediated by multiple transport systems in rats. American Journal Physiology. Gastrointestinal and Liver Physiology, 312, G355–G366.
Cao S M, Zhang S M, Liu G Q, Zhang L Y, Lu L, Zhang R J, Liao X D, Luo X G. 2020. Kinetics of phosphorus absorption and expressions of related transporters in primary cultured duodenal epithelial cells of chick embryos. Journal of Animal Physiology and Animal Nutrition, 104, 237–244.
Chi J T, Chang H Y, Wang N N, Chang D S, Dunphy N, Brown P O. 2003. Genomewide view of gene silencing by small interfering RNAs. Proceedings of the National Academy of Science of the United States of America, 100, 6343–6346.
Collins J F, Bai L, Ghishan F K. 2004. The SLC20 family of proteins: Dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Archiv: European Journal of Physiology, 447, 647–652.
Conde J, Ambrosone A, Sanz V, Hernandez Y, Marchesano V, Tian F, Child H, Berry C C, Ibarra M R, Baptista P V, Tortiglione C, de la Fuente J M. 2012. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano, 6, 8316–8324.
Fang R J, Xiang Z F, Cao M H, He J. 2012. Different phosphate transport in the duodenum and jejunum of chicken response to dietary phosphate adaptation. Asian-Australasian Journal of Animal Science, 25, 1457–1465.
Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology, 4, 117.
Han H J. 2018. RNA interference to knock down gene expression. Methods in Molecular Biology, 1706, 293–302.
Han J C, Yang X D, Zhang T, Li H, Li W L, Zhang Z Y, Yao J H. 2009. Effects of 1alpha-hydroxycholecalciferol on growth performance, parameters of tibia and plasma, meat quality, and type IIb sodium phosphate cotransporter gene expression of one- to twenty-one-day-old broilers. Poultry Science, 88, 323–329.
Han J C, Zhang J L, Zhang N, Yang X, Qu H X, Guo Y, Shi C X, Yan Y F. 2018. Age, phosphorus, and 25-hydroxycholecalciferol regulate mRNA expression of vitamin D receptor and sodium-phosphate cotransporter in the small intestine of broiler chickens. Poultry Science, 97, 1199–1208.
Hernando N, Myakala K, Simona F, Knöpfel T, Thomas L, Murer H, Wagner C A, Biber J. 2015. Intestinal depletion of NaPi-IIb/Slc34a2 in mice: Renal and hormonal adaptation. Journal of Bone and Mineral Research, 30, 1925–1937.
Hernando N, Wagner C A. 2018. Mechanisms and regulation of intestinal phosphate absorption. Comprehensive Physiology, 8, 1065–1090.
Hu Y X, Liao X D, Wen Q, Lu L, Zhang L Y, Luo X G. 2018. Phosphorus absorption and gene expression levels of related transporters in the small intestine of broilers. British Journal of Nutrition, 119, 1346–1354.
Huber K, Zeller E, Rodehutscord M. 2015. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers. Poultry Science, 94, 1009–1017.
Ikuta K, Segawa H, Sasaki S, Hanazaki A, Fujii T, Kushi A, Kawabata Y, Kirino R, Sasaki S, Noguchi M, Kaneko I, Tatsumi S, Ueda O, Wada N A, Tateishi H, Kakefuda M, Kawase Y, Ohtomo S, Ichida Y, Maeda A, Jishage K I, Horiba N, Miyamoto K I. 2018. Effect of Npt2b deletion on intestinal and renal inorganic phosphate (Pi) handling. Clinical and Experiment Nephrology, 22, 517–528.
Jiang Y, Lu L, Li S F, Wang L, Zhang L Y, Liu S B, Luo X G. 2016. An optimal dietary non-phytate phosphorus level of broilers fed a conventional corn-soybean meal diet from 4 to 6 weeks of age. Animal, 10, 1626–1634.
Li S F, Luo X G, Liu B, Crenshaw T D, Kuang X, Shao G Z, Yu S X. 2004. Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. Journal of Animal Science, 82, 2352–2363.
Liu G Q, Li S F, Su X, He Y, Zhang L Y, Lu L, Liao X D, Luo X G. 2019. Estimation of standardized mineral availabilities in feedstuffs for broilers. Journal of Animal Science, 97, 794–802.
Liu S B, Hu Y X, Liao X D, Lu L, Li S F, Zhang L Y, Tan H Z, Yang L, Suo H Q, Luo X G. 2016. Kinetics of phosphorus absorption in ligated small intestinal segments of broilers. Journal of Animal Science, 94, 3312–3320.
Liu S B, Li S F, Lu L, Xie J J, Zhang L Y, Jiang Y, Luo X G. 2012a. Development of a procedure to determine standardized mineral availabilities in soybean meal for broiler chicks. Biological Trace Element Research, 148, 32–37.
Liu S B, Li S F, Lu L, Xie J J, Zhang L Y, Luo X G. 2012b. Estimation of standardized phosphorus retention for corn, soybean meal, and corn-soybean meal diet in broilers. Poultry Science, 91, 1879–1885.
Liu S B, Liao X D, Lu L, Li S F, Wang L, Zhang L Y, Jiang Y, Luo X G. 2017. Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age. Poultry Science, 96, 151–159.
Liu S B, Xie J J, Lu L, Li S F, Zhang L Y, Jiang Y, Luo X G. 2013. Estimation of standardized phosphorus retention for inorganic phosphate sources in broilers. Journal of Animal Science, 91, 3766–3771.
Liu Y S, Beyer A, Aebersold R. 2016. On the dependency of cellular protein levels on mRNA abundance. Cell, 165, 535–550.
Lu L, Liao X D, Luo X G. 2017. Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry. Journal of Integrative Agriculture, 16, 2815–2833.
Lu N, Lu L, Liao X D, Zhang L Y, Luo X G. 2019. Phosphorus absorption and related transporter expression under low phosphorus concentrations in primary cultured duodenal epithelial cells of broiler embryos. Chinese Journal of Animal Nutrition, 31, 4186–4193. (in Chinese)
Marks J, Lee G J, Nadaraja S P, Debnam E S, Unwin R J. 2015. Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon. Physiological Reports, 3, e12281.
Michigami T, Kawai M, Yamazaki M, Ozono K. 2018. Phosphate as a signaling molecule and its sensing mechanism. Physiological Reviews, 98, 2317–2348.
Nie W, Yang Y, Yuan J M, Wang Z, Guo Y M. 2013. Effect of dietary nonphytate phosphorus on laying performance and small intestinal epithelial phosphate transporter expression in Dwarf pink-shell laying hens. Journal of Animal Science and Biotechnology, 4, 34.
NRC (National Research Council). 1994. Nutrient Requirements of Poultry. 9th ed. National Academies Press, Washington, D.C.
NY/T 33-2004. 2004. Feeding Standard of Chicken. Agricultural Press of China. (in Chinese)
Ohi A, Hanabusa E, Ueda O, Segawa H, Horiba N, Kaneko I, Kuwahara S, Mukai T, Sasaki S, Tominaga R, Furutani J, Aranami F, Ohtomo S, Oikawa Y, Kawase Y, Wada N A, Tachibe T, Kakefuda M, Tateishi H, Matsumoto K, et al. 2011. Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b+/– mice. American Journal of Physiology-Renal Physiology, 301, F1105-F1113.
Pastor-Arroyo E M, Knöpfel T, Imenez Silva P H, Schnitzbauer U, Poncet N, Biber J, Wagner C A, Hernando N. 2020. Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D3 upon dietary restriction of phosphate. Acta Physiologica, 230, e13526.
Powell S, Bidner T D, Southern L L. 2011. The effects of feeding various levels of nonphytate phosphorus in the starter phase on broiler growth performance and bone characteristics in subsequent phases. Journal of Applied Poultry Research, 20, 181–189.
Pratt J M, Petty J, Riba-Garcia I, Robertson D H, Gaskell S J, Oliver S G, Beynon R J. 2002. Dynamics of protein turnover, a missing dimension in proteomics. Molecular & Cell Proteomics, 1, 579–591.
Sabbagh Y, O’Brien S P, Song W, Boulanger J H, Stockmann A, Arbeeny C, Schiavi S C. 2009. Intestinal Npt2b plays a major role in phosphate absorption and homeostasis. Journal of the American Society of Nephrology, 20, 2348–2358.
Shao Y X, Wen Q, Zhang S M, Lu L, Zhang L Y, Liao X D, Luo X G. 2019. Dietary supplemental vitamin D3 enhances phosphorus absorption and utilisation by regulating gene expression of related phosphate transporters in the small intestine of broilers. British Journal of Nutrition, 121, 9–21.
Tamim N M, Angel R, Christman M. 2004. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poultry Science, 83, 1358–1367.
Tay-Zar A C, Srichana P, Sadiq M B, Anal A K. 2019. Restriction of dietary non-phytate phosphorus on growth performance and expression of intestinal phosphate cotransporter genes in broilers. Poultry Science, 98, 4685–4693.
Yan F, Angel R, Ashwell C M. 2007. Characterization of the chicken small intestine type IIb sodium phosphate cotransporter. Poultry Science, 86, 67–76.
Yuan C, Hua Z L, Ding Y, Shen J, Nie Y P, Ni X X. 2019. A large-batch sequential extraction and micro determination of the inorganic phosphorus in sediments. Chinese Journal of Analysis Laboratory, 38, 548–552. (in Chinese)
Zhang S M, Liao X D, Lu L, Zhang L Y, Luo X G. 2018. Isolation and identification of duodenal epithelial cells of broiler embryos in vitro and its establishment and evaluation of primary cultured absorption model. Chinese Journal of Animal Nutrition, 30, 3159–3167. (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|