Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (4): 1084-1093    DOI: 10.1016/S2095-3119(21)63706-1
Special Issue: 线虫合辑Nematology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The new effector AbSCP1 of foliar nematode (Aphelenchoides besseyi) is required for parasitism rice
HUANG Xin1, 2, CHI Yuan-kai1, Addisie Abate BIRHAN1, 3, ZHAO Wei1, QI Ren-de1, PENG De-liang2
1 Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, P.R.China
2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
3 Agricultural Biotechnology Directorate, Ethiopian Biotechnology Institute, Addis Ababa 5954, Ethiopia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

水稻干尖线虫可侵染水稻、大豆、棉花等多种作物,给农业生产造成严重损失。丝氨酸羧肽酶(SerineCarboxypeptidases,SCP)是植物寄生线虫致病的一个关键因子,但丝氨酸羧肽酶在水稻干尖线虫中的致病机制并不清楚。本研究以水稻干尖线虫为对象,利用原位杂交、qRT-PCR、瞬时表达、真核表达以及基因沉默等方法对水稻干尖线虫丝氨酸羧肽酶(AbSCP1)的功能进行研究。研究得出,AbSCP1基因全长1425 bp,编码氨基酸长度为474aa。AbSCP1编码蛋白具有信号肽、无跨膜结构域,与香蕉穿孔线虫SCP蛋白的序列相似性为67%。不同龄期水稻干尖线虫AbSCP1的qPCR分析得出,该基因在幼虫中的表达量最高,其次是雌虫、雄虫和卵。通过原位杂交证实,AbSCP1在水稻干尖线虫的食道腺中表达。使用昆虫细胞表达系统获得了AbSCP1蛋白,通过与特异性底物反应证实了该蛋白的羧肽酶活性,并得出了酶促反应最适的pH为4.5。使用烟草瞬时表达系统表达AbSCP1,在烟草细胞核中出现强烈的特异荧光信号,说明AbSCP1被定位在植物细胞核中。使用RNAi研究AbSCP1对水稻干尖线虫致病力、繁殖力的影响。结果得出,水稻干尖线虫取食AbSCP1特异的dsRNA 24 h后,AbSCP1的表达量显著下降。使用基因沉默后的线虫分别接种水稻和灰葡萄孢,分别统计水稻的发病等级和线虫数。结果表明,AbSCP1被沉默后,水稻干尖线虫的致病力、繁殖率均显著下降。本研究首次在水稻干尖线虫中明确了SCP是一类可被分泌到寄主细胞核中发挥作用的蛋白酶类效应子,在线虫寄生寄主过程中起到重要作用。本研究的成果将为以AbSCP1为靶标开发高效、安全的水稻干尖线虫防治措施奠定基础。

Abstract  Plant parasitic nematodes secrete effector proteins to parasitize hosts successfully.  Of these proteins, serine carboxypeptidases have critical roles in pathogenicity.  This study investigated the role of new effector AbSCP1 in Aphelenchoides besseyi pathogenicity.  In situ hybridization and qRT-PCR analyses indicated that AbSCP1 was exclusively expressed in the esophageal glands and upregulated in juveniles.  Subcellular localization assays indicated that the protein was expressed in the nucleus.  The ability to hydrolyze C-terminal amino acid residues was proven for AbSCP1.  Moreover, RNAi significantly reduced the expression of AbSCP1 and RNAi-treated nematodes’ reproductive potential.  Pathogenicity assays on rice showed that RNAi-treated nematodes were less pathogenic than the untreated control groups.  These results suggest the important role of AbSCP1 in the A. besseyi infection process.
Keywords:  Aphelenchoides besseyi       serine carboxypeptidases        effector        nematode        pathogenicity  
Received: 12 January 2021   Accepted: 24 March 2021
Fund: This work was supported by the National Natural Science Foundation of China (31701774) and the Natural Science Foundation of Anhui Province, China (2008085QC123).
About author:  HUANG Xin, E-mail:; Correspondence PENG De-liang, E-mail:; QI Ren-de, E-mail:

Cite this article: 

HUANG Xin, CHI Yuan-kai, Addisie Abate BIRHAN, ZHAO Wei, QI Ren-de, PENG De-liang. 2022. The new effector AbSCP1 of foliar nematode (Aphelenchoides besseyi) is required for parasitism rice. Journal of Integrative Agriculture, 21(4): 1084-1093.

Alvarez V E, Niemirowicz G T, Cazzulo J J. 2012. The peptidases of Trypanosoma cruzi: Digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochimica et Biophysica Acta: Proteins and Proteomics, 1824, 195–206.
Auriault C, Joseph M, Tartar A, Capron A. 1983. Characterization and synthesis of a macrophage inhibitory peptide from the second constant domain of human immunoglobulin G. FEBS Letters, 153, 11–15.
de Boer J M, Yan Y, Smant G, Davis E L, Baum T J. 1998. In-situ hybridization to messenger RNA in Heterodera glycines. Journal of Nematology, 30, 309–312.
Breddam K. 1986. Serine carboxypeptidases. A review. Carlsberg Research Communications, 51, 83–128.
Bridge J, Plowright R A, Peng D L. 2005. Nematode parasites of rice. In: Luc M, Sikora R A, Bridge J, eds., Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. 2nd ed. CAB Int. Wallingford, UK. pp. 87–99.
Cabral D, Banora M Y, Antonino J D, Rodiuc N, Vieira P, Coelho R R, Chevalier C, Eekhout T, Engler G, De Veylder L, Grossi de Sa M F, de Almeida Engler J. 2020. The plant WEE1 kinase is involved in checkpoint control activation in nematode induced galls. New Phytologist, 225, 430–447.
Chen J, Hu L, Sun L, Lin B, Huang K, Zhuo K, Liao J. 2018. A novel Meloidogyne graminicola effector, MgMO237, interacts with multiple host defence-related proteins to manipulate plant basal immunity and promote parasitism. Molecular Plant Pathology, 19, 1942–1955.
Chen J, Lin B, Huang Q, Hu L, Zhuo K, Liao J. 2017. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathogens, 13, e1006301.
Cheng X, Xiang Y, Xie H, Xu C, Xie T, Zhang C, Li Y. 2013. Molecular characterization and functions of fatty acid and retinoid binding protein gene (Ab-far–1) in Aphelenchoides besseyi. PLoS ONE, 8, e66011.
Davis E L, Hussey R S, Baum T J, Bakker J, Schots A, Rosso M N, Abad P. 2000. Nematode parasitism genes. Annual Review of Phytopathology, 38, 365–396.
EPPO (European Plant Protection Organization). 2012. Distribution Maps of Quarantine Pests for Europe: Aphlenchoides Besseyi. Commonwealth Agricultural Bureaux International, Wallingford, UK. Map p. 157.
Fang W, Xu S, Wang Y, Ni F, Zhang S, Liu J, Chen X, Luo D. 2010. ES proteins analysis of Angiostrongylus cantonensis: products of the potential parasitism genes? Parasitology Research, 106, 1027–1032.
Favoreto L, Faleiro V O, Freitas M A, Brauwers L R, Galbieri R, Homiak J A, Lopes-Caitar V S, Marcelino-Guimarães F C, Meyer M C. 2018. First report of Aphelenchoides besseyi infecting the aerial part of cotton plants in Brazil. Plant Disease, 102, 2662.
Hewitson J P, Harcus Y, Murray J, van Agtmaal M, Filbey K J, Grainger J R, Bridgett S, Blaxter M L, Ashton P D, Ashford D A, Curwen R S, Wilson R A, Dowle A A, Maizels R M. 2011. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. Journal of Proteomics, 74, 1573–1594.
Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K. 2007. WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35, W585–W587.
Hua Y, You J, Li C, Pan F, Wang C. 2019. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response. Plant Science, 289, 110271.
Huang X, Xu C, Chen W, Chen C, Xie H. 2017. Cloning and characterization of the first serine carboxypeptidase from a plant parasitic nematode, Radopholus similis. Scientific Reports, 7, 4815.
Huang X, Xu C, Yang S, Li J, Wang H, Zhang Z, Chen C, Xie H. 2019. Life-stage specific transcriptomes of a migratory endoparasitic plant nematode, Radopholus similis elucidate a different parasitic and life strategy of plant parasitic nematodes. Scientific Reports, 9, 6277.
Jones J T, Haegeman A, Danchin E G J, Gaur H S, Helder J, Jones M G K, Kikuchi T, Manzanilla-López R, Palomares-Rius J E, Wesemael W M L, Perry R N. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Lilley C J, Kyndt T, Gheysen G. 2011. Nematode resistant GM crops in industrialised and developing countries. In: Jones J, Gheysen G, Fenoll C, eds., Genomics and Molecular Genetics of Plant-Nematode Interactions. 1st ed. Springer, Dordrecht, Netherlands. pp. 517–541.
Liu J, Peng H, Cui J, Huang W, Kong L, Clarke J L, Jian H, Wang G, Peng D. 2016. Molecular characterization of a novel effector expansin-like protein from Heterodera avenae that induces cell death in Nicotiana benthamiana. Scientific Reports, 6, 35677.
Liu W, Lin M, Li H, Sun M. 2008. Dynamic development of Aphelenchoides besseyi on rice plant by artificial inoculation in the greenhouse. Agricultural Sciences in China, 7, 970–976.
Malagón D, Benítez R, Kašný M, Adroher F J. 2013. Peptidases in parasitic nematodes: A review. In: Erzinger G S, ed., Parasites: Ecology, Diseases and Management. 1st ed. Nova Science Publishers, Hauppage, USA. pp. 61–102.
Marikovsky M, Fishelson Z, Arnon R. 1988. Purification and characterization of proteases secreted by transforming schistosomula of Schistosoma mansoni. Molecular and Biochemical Parasitology, 30, 45–54.
Mathew R, Opperman C H. 2019. The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes. PLoS ONE, 14, e0224391.
Meyer M C, Favoreto L, Klepker D, Marcelino-Guimarães F C. 2017. Soybean green stem and foliar retention syndrome caused by Aphelenchoides besseyi. Tropical Plant Pathology, 42, 403–409.
Mortensen U H, Olesen K, Breddam K. 2013. Carboxypeptidase C including carboxypeptidase Y. In: Rawlings N D, Salvesen G, eds., Handbook of Proteolytic Enzymes. 3rd ed. Elsevier, London, UK. pp. 3408–3412.
Parussini F, García M, Mucci J, Agüero F, Sánchez D, Hellman U, Åslund L, Cazzulo J J. 2003. Characterization of a lysosomal serine carboxypeptidase from Trypanosoma cruzi. Molecular and Biochemical Parasitology, 131, 11–23.
Peng D L. 1998. Seed-borne nematode diseases and their management measures. Journal of China Agricultural University, 3, 93–96. (in Chinese)
Sakanari J A, McKerrow J H. 1990. Identification of the secreted neutral proteases from Anisakis simplex. International Journal for Parasitology, 76, 625–630.
Sakanari J A, Staunton C E, Eakin A E, Craik C S, McKerrow J H. 1989. Serine proteases from nematode and protozoan parasites: Isolation of sequence homologs using generic molecular probes. Proceedings of the National Academy of Sciences of the United States of America, 86, 4863–4867.
Soblik H, Younis A E, Mitreva M, Renard B Y, Kirchner M, Geisinger F, Steen H, Brattig N W. 2011. Life cycle stage-resolved proteomic analysis of the excretome/secretome from Strongyloides ratti - Identification of stage-specific proteases. Molecular & Cellular Proteomics, 10, M111.010157.
Sun M, Liu W, Lin M. 2009. Effects of temperature, humidity and different rice growth stages on vertical migration of Aphelenchoides besseyi. Rice Science, 16, 301–306. (in Chinese)
Thorpe P, Mantelin S, Cock P J, Blok V C, Coke M C, Eves-van den Akker S, Guzeeva E, Lilley C J, Smant G, Reid A J, Wright K M, Urwin P E, Jones J T. 2014. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida. BMC Genomics, 15, 923.
Tulek A, Kepenekci I, Cobanoglu S, Hekimhan H, Devran Z, Melik B, Elekcioglu H I. 2009. A new culturing method for the rice white tip nematode, Aphelenchoides besseyi Christie, 1942, on carrot discs. Russian Journal of Nematology, 17, 135–136.
Vieira P, Gleason C. 2019. Plant-parasitic nematode effectors - Insights into their diversity and new tools for their identification. Current Opinion in Plant Biology, 50, 37–43.
Wang D, Peng X, Xie H, Xu C, Cheng D, Li J, Wu W, Wang K. 2016. Arabidopsis thaliana as a suitable model host for research on interactions between plant and foliar nematodes, parasites of plant shoot. Scientific Reports, 6, 38286.
Wang G, Peng D, Gao B, Huang W, Kong L, Long H, Peng H, Jian H. 2014. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages. PLoS ONE, 9, e91634.
Wang H, Yang S, Lv M, Ding S, Li J, Xu C, Xie H. 2019. RNA-Seq revealed that infection with white tip nematodes could downregulate rice photosynthetic genes. Functional & Integrative Genomics, 20, 367–381.
Yatsuda A P, Krijgsveld J, Cornelissen A W, Heck A J, de Vries E. 2003. Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. The Journal of Biological Chemistry, 278, 16941–16951.
Zhu X, Xiao K, Cui H, Hu J. 2017. Overexpression of the Prunus sogdiana NBS-LRR subgroup gene PsoRPM2 promotes resistance to the root-knot nematode Meloidogyne incognita in tobacco. Frontiers in Microbiology, 8, 2113.

[1] ZHANG Hao-yang, YANG Yan-fang, GUO Feng, SHEN Xiao-rui, LU Shan, CHEN Bao-sha. SsRSS1 mediates salicylic acid tolerance and contributes to virulence in sugarcane smut fungus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2126-2137.
[2] ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism[J]. >Journal of Integrative Agriculture, 2023, 22(3): 799-811.
[3] ZHAO Yi-ran, ZHAO Yu-zhong, LIU Si-dang, XIAO Yi-hong, LI Ning, LIU Kui-hao, MENG Fan-liang, ZHAO Jun, LIU Meng-da, LI Bao-quan.

Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021 [J]. >Journal of Integrative Agriculture, 2023, 22(3): 881-896.

No Suggested Reading articles found!