Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (4): 1071-1083    DOI: 10.1016/S2095-3119(21)63711-5
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
P1 of strawberry vein banding virus, a multilocalized protein, functions as a movement protein and interacts with the coat protein
RUI Peng-huan1*, WANG Zhan-qi2*, SHAN Wen-shu1*, XIA Wei-wei1, ZHOU Xiu-hong3, YANG Lian-lian2, JIANG Lei1, 4, 5, JIANG Tong1, 4, 5
1 School of Plant Protection, Anhui Agricultural University, Hefei 230036, P.R.China
2 Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, P.R.China 
3 Biotechnology Center, Anhui Agricultural University, Hefei 230036, P.R.China
4 Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei 230036, P.R.China
5 Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei 230036, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

尽管草莓镶脉病毒(SVBV)的基因组全序列已经确定,生物信息学分析显示SVBV基因组可编码7个不同的蛋白,但每个蛋白的确切功能并不是非常清楚。在本研究中,我们提供了如下能够验证SVBV编码的P1蛋白(SVBV-P1)所具有的几个特点的证据。利用蛋白定位预测工具分析SVBV-P1蛋白亚细胞定位,共聚焦观察SVBV-P1浸润的本氏烟叶片,结果显示SVBV-P1蛋白定位于本氏烟表皮细胞的细胞质、细胞壁和胞间连丝,还能够在细胞质中形成与微管和内质网相关的包涵体。稀释的SVBV-P1浸润本氏烟叶片,使SVBV-P1蛋白在单细胞表达,结果显示一段时间之后SVBV-P1蛋白能从本氏烟叶片上农杆菌浸润的侵染点细胞转移到邻近的细胞,表明SVBV-P1蛋白具有胞间移动的能力。进一步将稀释的SVBV-P1与马铃薯X病毒(PVX)运动缺陷型突变体共浸润本氏烟叶片,结果显示PVX突变体能从单细胞移动至周围的细胞,表明SVBV-P1蛋白能促进失去运动功能的PVX突变体在本氏烟叶片的细胞间运动。最后,酵母双杂交实验与双分子荧光互补分析显示,SVBV-P1与SVBV-CP共转化的酵母菌能正常生长,SVBV-P1与SVBV-CP共浸润的本氏烟叶片出现荧光,表明SVBV-P1蛋白能与SVBV编码的外壳蛋白互作,而外壳蛋白是花椰菜花叶病毒属病毒粒子的主要成分。电泳迁移率试验测定结果显示,与SVBV-P1蛋白孵育的DNA在电泳过程中并未出现阻滞,说明SVBV-P1蛋白缺乏结合DNA的能力。综上所述,我们的研究结果表明SVBV-P1蛋白很可能是SVBV的运动蛋白,并且为进一步研究花椰菜花叶病毒属病毒的运动蛋白功能提供了新的思路。




Abstract  Although the complete nucleotide sequence of strawberry vein banding virus (SVBV) has been determined and bioinformatic analysis has revealed that the SVBV genome could encode seven proteins, the precise function of each protein is unclear.  This study provided evidence that the P1 protein of SVBV (SVBV-P1) possesses the following features.  Bioinformatic and subcellular localization analyses showed that SVBV-P1 is localized in the cytoplasm and cell walls of epidermal cells in Nicotiana benthamiana, and it forms inclusion bodies associated with microtubules and the endoplasmic reticulum.  Dilution experiments demonstrated that SVBV-P1 could move from the original agro-infiltrated cells to adjacent cells in N. benthamiana leaves.  Further trans-complementation experiments demonstrated that SVBV-P1 could facilitate the intercellular movement of a movement-deficient potato virus X mutant in N. benthamiana leaves.  Finally, yeast two-hybrid and bimolecular fluorescence complementation assays revealed that SVBV-P1 could interact with the SVBV coat protein, which is a major component of Caulimovirus virions.  Results of the electrophoretic mobility shift assay indicated that SVBV-P1 lacks DNA-binding capability.  In summary, the results suggest that SVBV-P1 is probably a movement protein of SVBV, providing new insights into the function of movement proteins of the Caulimovirus genus.
Keywords:  strawberry vein banding virus       P1 protein        movement protein        coat protein        virus movement  
Received: 06 December 2020   Accepted: 16 April 2021
Fund: This work was supported by the grants from the National Natural Science Foundation of China (32072386 and 31801700), the Key Research and Development Project of Anhui Province, China (202004a06020013) and the Postdoctoral Science Fund of Anhui Province, China (2019B360).
About author:  RUI Peng-huan, E-mail: 15755308130@163.com; WANG Zhan-qi, E-mail: zhqwang@zju.edu.cn; SHAN Wen-shu, E-mail: shanwenshu_ah@163.com; Correspondence JIANG Lei, Tel: +86-551-65786312, E-mail: jianglei062x@ahau.edu.cn; JIANG Tong, Tel: +86-551-65786312, E-mail: jiangtong4650@sina.com * These authors contributed equally to this study.

Cite this article: 

RUI Peng-huan, WANG Zhan-qi, SHAN Wen-shu, XIA Wei-wei, ZHOU Xiu-hong, YANG Lian-lian, JIANG Lei, JIANG Tong. 2022. P1 of strawberry vein banding virus, a multilocalized protein, functions as a movement protein and interacts with the coat protein. Journal of Integrative Agriculture, 21(4): 1071-1083.

Carluccio A V, Zicca S, Stavolone L. 2014. Hitching a ride on vesicles: Cauliflower mosaic virus movement protein trafficking in the endomembrane system. Plant Physiology, 164, 1261–1270.
Chai M Z, Wu X Y, Liu J H, Fang Y, Luan Y M, Cui X Y, Zhou X P, Wang A M, Cheng X F. 2020. P3N–PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. Journal of Virology, 94, 8.
Chen J, Zhang H P, Feng M F, Zuo D P, Hu Y H, Jiang T. 2016. Transcriptome analysis of woodland strawberry (Fragaria vesca) response to the infection by strawberry vein banding virus (SVBV). Virology Journal, 13, 128.
Chen M H, Sheng J, Hind G, Handa A K, Citovsky V. 2000. Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. The EMBO Journal, 19, 913–920. 
Chou K C, Shen H B. 2008. Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 3, 153–162.
Chowdhury S R, Savithri H S. 2011. Interaction of Sesbania mosaic virus movement protein with the coat protein - implications for viral spread. FEBS Journal, 278, 257–272.
Citovsky V, Knorr D, Zambryski P. 1991. Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 88, 2476–2480.
Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T Y, Wang A M, Laliberté J F. 2009. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. Journal of Virology, 83, 10460–10471.
Cui X F, Li G X, Wang D W, Hu D W, Zhou X P. 2005. A Begomovirus DNA beta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. Journal of Virology, 79, 10764–10775.
Dickison V, MacKenzie T, Singh M, Lawrence J, Nie X Z. 2017. Strawberry vein banding virus isolates in eastern Canada are molecularly divergent from other isolates. Archives of Virology, 162, 1777–1781.
Dorokhov Y L, Alexandrova N M, Miroshnichenko N A, Atabekov J G. 1983. Isolation and analysis of virus-specific ribonucleoprotein of tobacco mosaic virus-infected tobacco. Virology, 127, 237–252.
Feng M F, Zhang H P, Pan Y, Hu Y H, Chen J, Zuo D P, Jiang T. 2016. Complete nucleotide sequence of strawberry vein banding virus Chinese isolate and infectivity of its full-length DNA clone. Virology Journal, 13, 164.
Feng M F, Zuo D P, Jiang X Z, Li S, Chen J, Jiang L, Zhou X P, Jiang T. 2018. Identification of strawberry vein banding virus encoded P6 as an RNA silencing suppressor. Virology, 520, 103–110.
Feng Z K, Chen X J, Bao Y Q, Dong J H, Zhang Z K, Tao X R. 2013. Nucleocapsid of tomato spotted wilt tospovirus forms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytologist, 200, 1212–1224.
Fu S, Xu Y, Li C Y, Li Y, Wu J X, Zhou X P. 2018. Rice stripe virus interferes with S-acylation of remorin and induces its autophagic degradation to facilitate virus infection. Molecular Plant, 11, 269–287.
Genovés A, Navarro J A, Pallás V. 2009. A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology, 395, 133–142.
Genovés A, Pallás V, Navarro J A. 2011. Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic, and viral cell-to-cell movement. Journal of Virology, 85, 7797–7809.
Gietz R D, Schiestl R H. 2007. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nature Protocols, 2, 1–4.
Gillespie T, Boevink P, Haupt S, Roberts A G, Toth R, Valentine T, Chapman S, Oparka K J. 2002. Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of tobacco mosaic virus. Plant Cell, 14, 1207–1222.
Harries P A, Palanichelvam K, Yu W, Schoelz J E, Nelson R S. 2009. The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiology, 149, 1005–1016.
Hehnle S, Wege C, Jeske H. 2004. Interaction of DNA with the movement proteins of geminiviruses revisited. Journal of Virology, 78, 7698–7706.
Heinlein M. 2015. Plant virus replication and movement. Virology, 479–480, 657–671.
Holt C A, Beachy R N. 1991. In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology, 181, 109–117.
Hong J S, Ju H J. 2017. The plant cellular systems for plant virus movement. Plant Pathology Journal, 33, 213–228.
Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K. 2007. WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35, W585–W587.
Huang Y W, Geng Y F, Ying X B, Chen X Y, Fang R X. 2005. Identification of a movement protein of rice yellow stunt rhabdovirus. Journal of Virology, 79, 2108–2114.
Hull R, Sadler J, Longstaff M. 1986. The sequence of carnation etched ring virus DNA: Comparison with cauliflower mosaic virus and retroviruses. The EMBO Journal, 5, 3083–3090.
Itaya A, Hickman H, Bao Y M, Nelson R, Ding B. 1997. Cell-to-cell trafficking of cucumber mosaic virus movement protein: Green fluorescent protein fusion produced by biolistic gene bombardment in tobacco. The Plant Journal, 12, 1223–1230.
Itzhak D N, Tyanova S, Cox J, Borner G H. 2016. Global, quantitative and dynamic mapping of protein subcellular localization. elife, 5, e16950.
Ji X, Qian D, Wei C H, Ye G Y, Zhang Z K, Wu Z J, Xie L H, Li Y. 2011. Movement protein Pns6 of rice dwarf phytoreovirus has both ATPase and RNA binding activities. PLoS ONE, 6, e24986.
Kammel C, Thomaier M, Sørensen B B, Schubert T, Längst G, Grasser M, Grasser K D. 2013. Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS ONE, 8, e60644.
Kong L F, Wu J X, Lu L N, Xu Y, Zhou X P. 2014. Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Molecular Plant, 7, 691–708.
Kotlizky G, Katz A, van der Laak J, Boyko V, Lapidot M, Beachy R N, Heinlein M, Epel B L. 2001. A dysfunctional movement protein of tobacco mosaic virus interferes with targeting of wild-type movement protein to microtubules. Molecular Plant Microbe Interactions, 14, 895–904.
Kunze C, Bommer M, Hagen W R, Uksa M, Dobbek H, Schubert T, Diekert G. 2017. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer. Nature Communications, 8, 15858.
Lu Y W, Yan F, Guo W, Zheng H Y, Lin L, Peng J J, Adams M J, Chen J P. 2011. Garlic virus X 11-kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus. Molecular Plant Pathology, 12, 666–676.
Lucas J R, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw S L. 2011. Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. Plant Cell, 23, 1889–1903.
Lucas W J. 2006. Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology, 344, 169–184.
Margaria P, Anderson C T, Turina M, Rosa C. 2016. Identification of ourmiavirus 30K movement protein amino acid residues involved in symptomatology, viral movement, subcellular localization and tubule formation. Molecular Plant Pathology, 17, 1063–1079.
McInerney G M, Kedersha N L, Kaufman R J, Anderson P, Liljeström P. 2005. Importance of eIF2α phosphorylation and stress granule assembly in alphavirus translation regulation. Molecular Biology of the Cell, 16, 3753–3763.
Mei Y Z, Yang X L, Huang C J, Zhang X R, Zhou X P. 2018. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη-mediated phosphorylation in Nicotiana benthamiana. PLoS Pathogens, 14, e1006789.
Mráz I, Petrzik K, Šíp M, Fránová-Honetšlegrová J. 1998. Variability in coat protein sequence homology among American and European sources of strawberry vein banding virus. Plant Disease, 82, 544–546.
Navarro J A, Serra-Soriano M, Corachán-Valencia L, Pallás V. 2020. A conserved motif in three viral movement proteins from different genera is required for host factor recruitment and cell-to-cell movement. Scientific Reports, 10, 4758.
Pattanaik S, Dey N, Bhattacharyya S, Maiti I B. 2004. Isolation of full-length transcript promoter from the strawberry vein banding virus (SVBV) and expression analysis by protoplasts transient assays and in transgenic plants. Plant Science, 176, 427–438.
Petrzik K, Benes V, Mráz I, Honetslegrová-Fránová J, Ansorge W, Spak J. 1998. Strawberry vein banding virus - definitive member of the genus Caulimovirus. Virus Genes, 16, 303–305.
Pitzalis N, Heinlein M. 2017. The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. Journal of Experimental Botany, 69, 117–132.
Qiao W J, Medina V, Kuo Y W, Falk B W. 2018. A distinct, non-virion plant virus movement protein encoded by a Crinivirus essential for systemic infection. mBio, 9, e02230–e02248.
Ryabova L A, Pooggin M M, Hohn T. 2002. Viral strategies of translation initiation: Ribosomal shunt and reinitiation. Progress in Nucleic Acid Research and Molecular Biology, 72, 1–39.
Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M. 2008. Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic, 9, 2073–2088.
Schoelz J E, Angel C A, Nelson R S, Leisner S M. 2016. A model for intracellular movement of cauliflower mosaic virus: The concept of the mobile virion factory. Journal of Experimental Botany, 67, 2039–2048.
Schoelz J E, Harries P A, Nelson R S. 2011. Intracellular transport of plant viruses: Finding the door out of the cell. Molecular Plant, 4, 813–831.
Schoelz J E, Leisner S. 2017. Setting up shop: The formation and function of the viral factories of cauliflower mosaic virus. Frontiers in Plant Science, 8, 1832.
Scholthof H B. 2005. Plant virus transport: Motions of functional equivalence. Trends in Plant Science, 10, 376–382.
Xiong R Y, Wu J X, Zhou Y J, Zhou X P. 2008. Identification of a movement protein of the tenuivirus rice stripe virus. Journal of Virology, 82, 12304–12311.
Yan F, Lu Y W, Lin L, Zheng H Y, Chen J P. 2012. The ability of PVX p25 to form RL structures in plant cells is necessary for its function in movement, but not for its suppression of RNA silencing. PLoS ONE, 7, e43242.
Yang X L, Xie Y, Raja P, Li S, Wolf J N, Shen Q, Bisaro D M, Zhou X P. 2011. Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathogens, 7, e1002329.
Yao M, Liu X F, Li S, Xu Y, Zhou Y J, Zhou X P, Tao X R. 2014. Rice stripe tenuivirus NSvc2 glycoproteins targeted to the golgi body by the N-terminal transmembrane domain and adjacent cytosolic 24 amino acids via the COP I- and COP II-dependent secretion pathway. Journal of Virology, 88, 3223–3234.
Yuan C, Lazarowitz S G, Citovsky V. 2016. Identification of a functional plasmodesmal localization signal in a plant viral cell-to-cell-movement protein. mBio, 7, e02052–e02067.
Zhong X T, Wang Z Q, Xiao R Y, Cao L G, Wang Y Q, Xie Y, Zhou X P. 2017. Mimic phosphorylation of a βC1 protein encoded by TYLCCNB impairs its functions as a viral suppressor of RNA silencing and a symptom determinant. Journal of Virology, 91, e00300–e00317.
Zhou X, Lin W Y, Sun K, Wang S, Zhou X P, Jackson A O, Li Z H. 2019. Specificity of plant rhabdovirus cell-to-cell movement. Journal of Virology, 93, e00296–e00315.

No related articles found!
No Suggested Reading articles found!