Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (4): 931-940    DOI: 10.1016/S2095-3119(19)62644-4
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26
QU Yun-feng1, 2, WU Pei-pei2, HU Jing-huang2, CHEN Yong-xing3, SHI Zhan-liang4, QIU Dan2, LI Ya-hui2, ZHANG Hong-jun2, ZHOU Yang2, YANG Li2, LIU Hong-wei2, ZHU Tong-quan5, LIU Zhi-yong3, ZHANG Yan-ming1, LI Hong-jie
1 Key Laboratory of Molecular Cytogenetic and Genetic Breeding of Heilongjiang Province/College of Life Science and Technology, Harbin Normal University, Harbin 150025, P.R.China
2 National Engineering Laboratory for Crop Molecular Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R.China
4 Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, P.R.China
5 Wheat Research Institute, Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Resistance to powdery mildew is an important trait of interest in many wheat breeding programs.  The information on genes conferring resistance to powdery mildew in wheat cultivars is useful in parental selection.  Winter wheat breeding line DH51302 derived from Liangxing 99 and cultivar Shimai 26 derived from Jimai 22 showed identical infection patterns against 13 isolates of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew.  DH51302 and Shimai 26 were crossed to a powdery mildew susceptible cultivar Zhongzuo 9504 and the F2:3 families were used in molecular localization of the resistance genes.  Fourteen polymorphic markers, which were linked to Pm52 from Liangxing 99, were used to establish the genetic linkage maps for the resistance genes PmDH51302 and PmSM26 in DH51302 and Shimai 26, respectively.  These genes were placed in the same genetic interval where Pm52 resides.  Analysis of gene-linked molecular markers indicated that PmDH51302 and PmSM26 differed from other powdery mildew resistance genes on chromosome arm 2BL, such as Pm6, Pm33, Pm51, MlZec1, MlAB10, and Pm64.  Based on the results of reaction patterns to different Bgt isolates and molecular marker localization, together with the pedigree information, DH51302 and Shimai 26 carried the same gene, Pm52, which confers their resistance to powdery mildew.
 
Keywords:  Triticum aestivum        Blumeria graminis f. sp. tritici        Pm52        molecular mapping  
Received: 03 December 2018   Accepted:
Fund: The authors thank the financial support provided by the National Key Research and Development Program of China (2017YFD0100600), the National Natural Science Foundation of China (31471491 and 31871621), the Chinese Academy of Agricultural Sciences (CAAS) Innovation Team, and the International Cooperation Project in the Innovative Engineering of CAAS (CAAS-XTCX2018-020-2).
Corresponding Authors:  Correspondence LI Hong-jie, Tel: +86-10-82105321, E-mail: lihongjie@caas.cn; ZHANG Yan-ming, E-mail: blueright@163.com   
About author: 

Cite this article: 

QU Yun-feng, WU Pei-pei, HU Jing-huang, CHEN Yong-xing, SHI Zhan-liang, QIU Dan, LI Ya-hui, ZHANG Hong-jun, ZHOU Yang, YANG Li, LIU Hong-wei, ZHU Tong-quan, LIU Zhi-yong, ZHANG Yan-ming, LI Hong-jie. 2020. Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26. Journal of Integrative Agriculture, 19(4): 931-940.

Cowger C, Miranda L, Griffey C, Hall M, Murphy J P, Maxwell J. 2012. Wheat powdery mildew. In: Sharma I, ed., Disease Resistance in Wheat. CBA International, Oxfordshire, UK. pp. 84–119.
Hu T Z, Li H J, Liu Z J, Xie C J, Zhou Y L, Duan X Y, Jia X, You M S, Yang Z M, Sun Q X, Liu Z Y. 2008. Identification and molecular mapping of the powdery mildew resistance gene in wheat cultivar Yumai 66. Acta Agronomica Sinica, 34, 545–550. (in Chinese)
Huang J, Zhao Z H, Song F J, Wang X M, Xu H X, An D G, Li H J. 2012. Molecular detection of a gene effective against powdery mildew in wheat cultivar Liangxing 66. Molecular Breeding, 30, 1737–1745.
Kosambi D D. 1944. The estimation of map distances from recombination values. Annals of Eugenics, 12, 172–175.
Li G P, Chen P D, Zhang S Z, Wang X E, He Z H, Zhang Y, Zhao H, Huang H Y, Zhou X C. 2007. Effect of the 6VS·6AL translocation on agronomic traits and dough properties of wheat. Euphytica, 37, 934–954.
Li H J, Wang X M, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y. 2011. Response to powdery mildew and detection of resistance genes in wheat cultivars from China. Acta Agronomica Sinica, 37, 943–954. (in Chinese)
Lincoln S E, Daly M J, Lander E S. 1993. Constructing Linkage Maps with MAPMAKER/Exp. version 3.0. A Tutorial Reference Manual. Whitehead Institute for Medical Research, Cambridge.
Liu Z Y, Sun Q X, Ni Z F, Yang T. 1999. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding, 118, 215–219.
Ma P T, Xu H X, Xu Y F, Song L P, Liang S S, Sheng Y, Han G H, Zhang X T, An D G. 2018. Characterization of a powdery mildew resistance gene in wheat breeding line 10V-2 and its application in marker-assisted selection. Plant Disease, 102, 925–931.
Maxwell J J, Lyerly J H, Srnic G, Parks R, Cowger C, Marshall D, Brown-Guedira G, Murphy J P. 2010. MlAB10: A Triticum turgidum subsp. dicoccoides derived powdery mildew resistance gene identified in common wheat. Crop Science, 50, 2261–2267.
McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. 2014. Catalogue of gene symbols for wheat: 2013–2014 supplement. [2018-11-01]. http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf
Mohler V, Zeller F J, Wenzel G, Hsam S L K. 2005. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 142, 161–167.
Qin B, Cao A Z, Wang H Y, Chen T T, You F M, Liu Y Y, Ji J H, Liu D J, Chen P D, Wang X E. 2011. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theoretical and Applied Genetics, 123, 207–218.
Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proceedings of the National Academy Sciences of the United States of America, 81, 8014–8018.
Singh R P, Singh P K, Rutkoski J, Hodson D P, He X Y, Jørgensen L N, Hovmøller M S, Huerta-Espino J. 2016. Disease impact on wheat yield potential and prospects of genetic control. Annual Review of Phytopathology, 54, 303–322.
Wu P P, Hu J H, Zou J W, Qiu D, Qu Y F, Li Y H, Li T, Zhang H J, Yang L, Liu H W, Zhou Y, Zhang Z J, Li J T, Liu Z Y, Li H J. 2019. Fine mapping of the wheat powdery mildew resistance gene Pm52 using comparative genomics analysis and the Chinese Spring reference genomic sequence. Theoretical and Applied Genetics, 132, 1451–1461.
Xie J Z, Wang L L, Wang Y, Zhang H Z, Zhou S H, Wu Q H, Chen Y X, Wang Z Z, Wang G X, Zhang D Y, Zhang Y, Hu T Z, Liu Z Y. 2017. Fine mapping of powdery mildew resistance gene PmTm4 in wheat using comparative genomics. Journal of Integrative Agriculture, 16, 540–550.
Xu W G, Li C X, Hu L, Zhang L, Zhang J Z, Dong H B, Wang G S. 2010. Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Molecular Breeding, 26, 31–38.
Yin G H, Li G Y, He Z H, Liu J J, Wang H, Xia X C. 2009. Molecular mapping of powdery mildew resistance gene in wheat cultivar Jimai 22. Acta Agronomica Sinica, 35, 1425–1431. (in Chinese)
Zhan H X, Li G R, Zhang X J, Li X, Guo H J, Gong W P, Jia J Q, Qiao L Y, Ren Y K, Yang Z J, Chang Z J. 2014. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS ONE, 9, e113455.
Zhang D Y, Dong L L, Liang Y, Li G Q, Fang T L, Guo G H, Wu Q H, Xie J Z, Chen Y X, Lu P, Li M M, Zhang H Z, Wang Z Z, Zhang Y, Sun Q X, Liu Z Y. 2019. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccides) is tighly linked in repulsiion with stripe rust resistance gene Yr5. The Crop Journal, 7, 761–770.
Zhao C H, Cui F, Li J, Ding A M, Li X F, Gao J R, Wang H G. 2011. Genetic difference of siblines derived from winter wheat germplasm “Aimengniu”. Acta Agronomica Sinica, 37, 1333–1341. (in Chinese)
Zhao Z H, Sun H G, Song W, Lu M, Huang J, Wu L F, Wang X M, Li H J. 2013. Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theoretical and Applied Genetics, 126, 3081–3089.
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J. 2004. Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agronomica Sinica, 30, 531–535. (in Chinese)
Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. 2005. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 48, 585–590.
Zou J W, Qiu D, Sun Y L, Zheng C X, Li J T, Wu P P, Wu X F, Wang X M, Zhou Y, Li H J. 2017. Pm52: Effectiveness of the gene conferring resistance to powdery mildew in wheat cultivar Liangxing 99. Acta Agronomica Sinica, 43, 332. (in Chinese)
[1] CHI Qing, DU Lin-ying, MA Wen, NIU Ruo-yu, WU Bao-wei, GUO Li-jian, MA Meng, LIU Xiang-li, ZHAO Hui-xian. The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(4): 981-998.
[2] ZHAO Ying-jia, ZHANG Yan-yang, BAI Xin-yang, LIN Rui-ze, SHI Gui-qing, DU Ping-ping, XIAO Kai. TaNF-YB11, a gene of NF-Y transcription factor family in Triticum aestivum, confers drought tolerance on plants via modulating osmolyte accumulation and reactive oxygen species homeostasis[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3114-3130.
[3] MA Dong-fang, HOU Lu, SUN Cai, ZHANG Xing, YIN Jun-liang, GUO Qing-yun, ZHU Yong-xing. Molecular mapping of stripe rust resistance gene YrH9017 in wheat-Psathyrostachys huashanica introgression line H9017-14-16-5-3[J]. >Journal of Integrative Agriculture, 2019, 18(1): 108-114.
No Suggested Reading articles found!