Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (1): 99-107    DOI: 10.1016/S2095-3119(19)62620-1
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.)
Alefsi David SÁNCHEZ-REINOSO, Gustavo Adolfo LIGARRETO-MORENO, Hermann RESTREPO-DÍAZ
Departamento de Agronomía, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia
Download: 
Export:  BibTeX | EndNote (RIS)      
Abstract  
Drought is one of the major abiotic stresses often causing negative impacts on bean crops in the Andean region in Colombia.  An experiment under the greenhouse conditions was carried out to assess the effect of a prolonged drought period (15 days) at two different phenological stages (vegetative or reproductive) on grain yield and yield components of five bush bean cultivars (ICA-Cerinza, Bachue, NUA35, Bianca, and Bacatá).  Nine tolerance indices including stress susceptibility index (SSI), tolerance (TOL), mean productivity (MP), geometric mean productivity (GMP), stress tolerance index (STI), yield stability index (YSI), yield index (YI), Harmonic mean (HM), and drought sensitivity index (DSI) were calculated based on grain yield under non-stressed (YP) and drought (YS) conditions.  Based on the different drought indices, genotypes ICA-Cerinza and NUA35 had the best performance under drought conditions in both studied phases, which reflected in a reduction of grain yield ~≤40%.  The biplot analysis also showed a clear superiority of these two genotypes at both phenological stages. Results also showed that SSI was more effective to identify genotypes less affected by drought.  The above results allowed us to conclude that ICA-Cerinza and NUA35 may be considered for agricultural areas where long periods of water deficit are expected and can be used in breeding programs for drought tolerance.
Keywords:  yield components        selection indices        correlation        biplot analysis  
Received: 05 September 2018   Accepted:
Corresponding Authors:  Correspondence Hermann RESTREPO-DíAZ, E-mail: hrestrepod@unal.edu.co   

Cite this article: 

Alefsi David SáNCHEZ-REINOSO, Gustavo Adolfo LIGARRETO-MORENO, Hermann RESTREPO-DíAZ. 2020. Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). Journal of Integrative Agriculture, 19(1): 99-107.

Abrisqueta I, Vera J, Tapia L M, Abrisqueta J M, Ruiz-Sánchez M C. 2012. Soil water content criteria for peach trees water stress detection during the postharvest period. Agricultural Water Management, 104, 62–67.
Akçura M, Partigo F, Kaya Y. 2011. Evaluating of drought stress tolerance based on selection indices in Turkish bread wheat landraces. The Journal of Animal and Plant Sciences, 21, 700–709.
Beebe S. 2012. Common bean breeding in the tropics. In: Janick J, ed., Plant Breeding Reviews. volume 36. John Wiley and Sons, Hoboken, NJ. pp. 357–425.
Beebe S E, Rao I M, Blair M W, Acosta-Gallegos J A. 2013. Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4, 1–20.
Bouslama M, Schapaugh W T. 1984. Stress tolerance in soybean. Part 1. Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24, 933–937.
Broughton W J, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. 2003. Beans (Phaseolus spp.) - model food legumes. Plant and Soil, 252, 55–128.
Chaves M M, Pereira J S, Maroco J, Rodrigues M L, Ricardo C P P, Osório M L, Carvalho I, Faria T, Pinheiro C. 2002. How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89, 907–916.
Comunidad Andina. 2009. Atlas de las dinámicas del territorio andino: Población y bienes expuestos a amenazas naturales. Secretaria General de la Comunidad. [2018-07-20]. http://www.comunidadandina.org/public/Atlas_12_Cuando_deja_de_llover.pdf (in Spanish)
Darkwa K, Ambachewa D, Mohammedb H, Asfawa A, Blair M W. 2016. Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia.  The Crop Journal, 4, 367–376.
Ehdaie B, Shakiba M R. 1996. Relationship of internode-specific weight and water-soluble carbohydrates in wheat. Cereal Reserach Communications, 24, 61–67.
El-Rawy, M A, Hassan M I. 2014. Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology, 17, 255–266.
Farshadfar E, Javadinia J. 2011. Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seed and Plant Improvement Journal, 27, 517–537.
Farshadfar E, Mohammadi R, Farshadfar M, Dabiri S. 2013. Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines. Australian Journal of Crop Science, 7, 130–198.
Feller C, Bleiholder H, Buhr L, Hack H, Hess M, Klose R, Meier U, Stauss R, Van den Boom T, Weber E. 1995: Phänologische Entwicklungsstadien von Gemüsepflanzen: II. Fruchtgemüse und Hülsenfrüchte. Nachrichtenbl. Deut. Pflanzenschutzd, 47, 217–232. (in German)
Fenalce. 2016. Fondo nacional de leguminosas; informe de gestión año 2015. [2018-07-20]. http://www.fenalce.org/nueva/plantillas/arch_web/Salida_de_cosecha_leguminosas.pdf (in Spanish)
Fernandez G C J. 1992. Effective selection criteria for assessing stress tolerance. In: Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress Tolerance. Asian Vegetable Research and Development Centre, Taiwan. pp. 257–270.
Fischer R A, Maurer R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield response. Australian Journal of Agricultural Research, 29, 897–912.
Gavuzzi P, Rizza F, Palumbo M, Campaline R G, Ricciardi G L, Borghi B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal Plant Science, 77, 523–531.
Gholinezhad E, Darvishzadeh R, Bernousi I. 2014. Evaluation of drought tolerance indices for selection of confectionery sunflower (Helianthus anuus L.) landraces under various environmental conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, 187–201.
Jones H G. 2007. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 58, 119–130.
Kaya Y, Plta C, Taner S. 2002. Additive main effects and multiplicative interaction analysis of yield performance in bread wheat genotypes across environments. Turkish Journal of Agriculture, 26, 257–259.
Kiliç H, Ya?basanlar T. 2010. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici, 38, 164–170.
Khodarahmpour Z, Choukan R, Bihamta M R, Majidi-Hervan E. 2011. Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan province conditions. Iranian Journal of Crop Sciences, 13, 111–121.
Lobell D B, Gourdji S M. 2012. The influence of climate change on global crop productivity. Plant Physiology, 160, 1686–1697.
Menezes C B, Ticona-Benavente C A, Tardin F D, Cardoso M J, Bastos E A, Nogueira D W, Portugal A F, Santos C V, Schaffert R E. 2014. Selection indices to identify drought-tolerant grain sorghum cultivars. Genetics and Molecular Research, 13, 9817–9827.
Meyer E, Aspinwall M J, Lowry D B, Palacio-Mejía J D, Logan T L, Fay P A, Juenger T E. 2014. Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics, 15, 527.
Mitra J. 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80, 758–762.
Monasterio P P, Pierre F, Barreto T, Marin C, Mora O, Tablante J, Mendoza C. 2011. Influencia del fenómeno el niño/oscilación del sur sobre la precipitación y rendimiento del cultivo de maíz en el municipio peña, estado Yaracuy, Venezuela el niño/southern. Agronomia Tropical, 61, 59–72.  (in Spanish)
Naghavi M R, Aboughadareh A P, Khalili M. 2013. Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 5, 388–393.
Nouri A, Etminan A, Teixeira da Silva J A, Mohammadi R. 2011. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Science, 5, 8–16.
Omae H, Kumarand A, Shono M. 2012. Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. Journal of Botany, 1–6.
Pérez-Vega J C, Blair M W, Monserrate F, Ligarreto G. 2011. Evaluation of an Andean common bean reference collection under drought stress. Agronomia Colombiana, 29, 17–26.
Polanía J A, Rao I M, Mejía S, Beebe S E, Cajiao C. 2012. Morpho-physiological characteristics of common bean (Phaseolus vulgaris L.) related to drought adaptation. Acta Agronomica, 61, 179–187.
Ramirez-Vallejo P, Kelly J D. 1998. Traits related to drought resistance in common bean. Euphytica, 99, 127–136.
Rosielle A A, Hamblin J. 1981. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 21, 943–946.
Ruiz A D C, Pabón J D. 2013. Efecto de los fenómenos de El Niño y La Niña en la precipitación y su impacto en la producción agrícola del departamento del Atlántico (Colombia). Cuadernos de Geografía (Revista Colombiana de Geografía), 22, 35–54. (in Spanish)
Sánchez-Reinoso A D, Ligarreto-Moreno G A, Restrepo-Díaz H. 2018. Physiological and biochemical expressions of a determinated growth common bean genotype (Phaseolus vulgaris L.) to water deficit stress periods. Journal of Animal & Plant Sciences, 28, 119–127.
Shirani-Rad A H, Abbasian A. 2011. Evaluation of drought tolerance in rapeseed genotypes under non-stress and drought stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39, 164–171.
[1] XIE Jun, Blagodatskaya EVGENIA, ZHANG Yu, WAN Yu, HU Qi-juan, ZHANG Cheng-ming, WANG Jie, ZHANG Yue-qiang, SHI Xiao-jun. Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improved rice grain yield, nutrient use efficiency and soil carbon sequestration[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3345-3355.
[2] CHEN Yuan, LIU Zhen-yu, HENG Li, Leila I. M. TAMBEL, ZHANG Xiang, CHEN Yuan, CHEN De-hua. Effects of plant density and mepiquat chloride application on cotton boll setting in wheat–cotton double cropping system[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2372-2381.
[3] MENG Lu, ZHANG Li-zhen, QI Hai-kun, DU Ming-wei, ZUO Yan-li, ZHANG Ming-cai, TIAN Xiao-li, LI Zhao-hu. Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2892-2899.
[4] LIU Xin, WANG Wen-xin, LIN Xiang, GU Shu-bo, WANG Dong. The effects of intraspecific competition and light transmission within the canopy on wheat yield in a wide-precision planting pattern[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1577-1585.
[5] ZHANG Da-zhong, Rabia Begum Panhwar, LIU Jia-jia, GONG Xiang-wei, LIANG Ji-bao, LIU Minxuan, LU Ping, GAO Xiao-li, FENG Bai-li. Morphological diversity and correlation analysis of phenotypes and quality traits of proso millet (Panicum miliaceum L.) core collections[J]. >Journal of Integrative Agriculture, 2019, 18(5): 958-969.
[6] REN Ai-xia, SUN Min, WANG Pei-ru, XUE Ling-zhu, LEI Miao-miao, XUE Jian-fu, GAO Zhi-qiang, YANG Zhen-ping. No-tillage effects on grain yield and nitrogen requirements in hybrid rice transplanted with single seedlings: Results of a long-term experiment[J]. >Journal of Integrative Agriculture, 2019, 18(1): 33-42.
[7] LI Fu-rong, WEN Dian, WANG Fu-hua, SUN Fang-fang, WANG Xu, DU Ying-qiong, LIU Xiang-xiang, WAN Kai. Derivation of soil Pb/Cd/As thresholds for safety of vegetable planting: A case study for pakchoi in Guangdong Province, China[J]. >Journal of Integrative Agriculture, 2019, 18(1): 179-189.
[8] Umakanta Sarker, Md Tofazzal Islam, Md Golam Rabbani, Shinya Oba. Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1145-1153.
[9] ZHANG Jing, WANG Hai-bin, LIU Juan, CHEN Hao, DU Yan-xiu, LI Jun-zhou, SUN Hong-zheng, PENG Ting, ZHAO Quan-zhi. Influence of water potential and soil type on conventional japonica super rice yield and soil enzyme activities[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1044-1052.
[10] LIU Min-xuan, ZHANG Zong-wen, REN Gui-xing, ZHANG Qi, WANG Yin-yue, LU Ping. Evaluation of selenium and carotenoid concentrations of 200 foxtail millet accessions from China and their correlations with agronomic performance[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1449-1457.
[11] WANG Yin, LIU Tao, LI Xiao-kun, REN Tao, CONG Ri-huan, LU Jian-wei. Nutrient deficiency limits population development, yield formation, and nutrient uptake of direct sown winter oilseed rape[J]. >Journal of Integrative Agriculture, 2015, 14(4): 670-680.
No Suggested Reading articles found!