Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (11): 2500-2507    DOI: 10.1016/S2095-3119(13)60691-7
Animal Science · Veterinary Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Overexpression of a Cytosolic Ascorbate Peroxidase Gene, OsAPX2, Increases Salt Tolerance in Transgenic Alfalfa
 ZHANG Qian, MA Cui, XUE Xin, XU Ming, LI Jing , WU Jin-xia
1、Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2、College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Alfalfa (Medicago sativa L.) is an important forage crop in the world and it is of great significance for the improvement of its salt tolerance. To improve salt tolerance in alfalfa, a rice ascorbate peroxidase gene (OsAPX2) was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation with marker gene bar. The different T-DNA insertions in T1 transgenic alfalfa were identified by Southern hybridization. Three independent T2 transgenic lines were selected for stress analysis and the results showed that all of them were salt tolerant compared with wild-type plants. The transgenic plants had low levels of H2O2, malondialdehyde and relative electrical conductivity under salt and drought stresses. Moreover, the contents of chlorophyll and proline, and APX activity were high in transgenic plants under salt and drought stresses. Taken together, the overexpression of OsAPX2 enhances salt tolerance in alfalfa through scavenging reactive oxygen species.

Abstract  Alfalfa (Medicago sativa L.) is an important forage crop in the world and it is of great significance for the improvement of its salt tolerance. To improve salt tolerance in alfalfa, a rice ascorbate peroxidase gene (OsAPX2) was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation with marker gene bar. The different T-DNA insertions in T1 transgenic alfalfa were identified by Southern hybridization. Three independent T2 transgenic lines were selected for stress analysis and the results showed that all of them were salt tolerant compared with wild-type plants. The transgenic plants had low levels of H2O2, malondialdehyde and relative electrical conductivity under salt and drought stresses. Moreover, the contents of chlorophyll and proline, and APX activity were high in transgenic plants under salt and drought stresses. Taken together, the overexpression of OsAPX2 enhances salt tolerance in alfalfa through scavenging reactive oxygen species.
Keywords:  ascorbate peroxidase (APX)       rice (Oryza sativa L.)       salt tolerance       alfalfa  
Received: 01 August 2013   Accepted:
Fund: 

This work was supported by the National 973 Program of China (2014CB138700).

Corresponding Authors:  WU Jin-xia, Tel: +86-10-82106133, Fax: +86-10-82106132, E-mail: wujinxia@caas.cn     E-mail:  wujinxia@caas.cn
About author:  ZHANG Qian, E-mail: springzhang55@163.com

Cite this article: 

ZHANG Qian, MA Cui, XUE Xin, XU Ming, LI Jing , WU Jin-xia. 2014. Overexpression of a Cytosolic Ascorbate Peroxidase Gene, OsAPX2, Increases Salt Tolerance in Transgenic Alfalfa. Journal of Integrative Agriculture, 13(11): 2500-2507.

Agrawal G K, Jwa N S, Iwahashi H, Rakwal R. 2003.Importance of ascorbate peroxidases OsAPX1 andOsAPX2 in the rice pathogen response pathways andgrowth and reproduction revealed by their transcriptionalprofiling. Gene, 322, 93-103

Asada K 1999. The water-water cycle in chloroplasts:Scavenging of active oxygens and dissipation of excessphotons. Annual Review of Plant Physiology and PlantMolecular Biology, 50, 601-639

Bates L, Walderen R, Taere I. 1973. Rapid determination offree proline for water stress studies. Plant and Soil, 39,205-207

Chew O, Whelan J, Millar A H. 2003. Molecular definitionof the ascorbate-glutathione cycle in Arabidopsismitochondria reveals dual targeting of antioxidant defensesin plants. The Journal of Biological Chemistry, 278,46869-46877

Davletova S, Rizhsky L, Liang H, Shengqiang Z, OliverD J, Coutu J, Shulaev V, Schlauch K, Mittler R. 2005.Cytosolic ascorbate peroxidase 1 is a central componentof the reactive oxygen gene network of Arabidopsis. ThePlant Cell, 17, 268-281

Hare P, Cress W, van Staden J. 1998. Dissecting the rolesof osmolyte accumulation during stress. Plant Cell andEnvironment, 21, 535-553

Hodges D, de Long J, Forney C, Prange R. 1999. Improving thethiobarbituric acid-reactive-substances assay for estimatinglipid peroxidation in plant tissues containing anthocyaninand other interfering compounds. Planta, 207, 604-611

Jain M, Mathur G, Koul S, Sarin N. 2001. Ameliorative effectof proline on the salt stress induced lipid peroxidation incell lines of groundnut (Arachis hypogea L.). Plant CellReports, 20, 463-468

Karpinski S, Escobar C, Karpinska B, Creissen G, MullineauxP M. 1997. Photosynthetic electron transport regulatesthe expression of cytosolic ascorbate peroxidase genesin Arabidopsis during excess light stress. The Plant Cell,9, 627-640

Koussevitzky S, Suzuki N, Huntington S, Armijo L, ShaW, Cortes D, Shulaev V, Mittler R. 2008. Ascorbateperoxidase 1 plays a key role in the response of Arabidopsisthaliana to stress combination. The Journal of BiologicalChemistry, 283, 34197-34203

Lu Z, Liu D, Liu S. 2007. Two rice cytosolic ascorbateperoxidases differentially improve salt tolerance intransgenic Arabidopsis. Plant Cell Reports, 26, 1909-1917

Maruta T, Tanouchi A, Tamoi M, Yabuta Y, Yoshimura K,Ishikawa T, Shigeoka S. 2010. Arabidopsis chloroplasticascorbate peroxidase isoenzymes play a dual role inphotoprotection and gene regulation under photooxidativestress. Plant and Cell Physiology, 51, 190-200

Mckersie B D, Bowley S R, Harjanto E, Leprince O. 1996.Water-deficit tolerance and field performance of transgenicalfalfa overexpressing superoxide dismutase. PlantPhysiology, 111, 1177-1181

 Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S,Mittler R. 2007. Double mutants deficient in cytosolicand thylakoid ascorbate peroxidase reveal a complexmode of interaction between reactive oxygen species,plant development, and response to abiotic stresses. PlantPhysiology, 144, 1777-1785

Mittler R, Vanderauwera S, Gollery M, van Breusegem F.2004. Reactive oxygen gene network of plants. Trends inPlant Science, 9, 490-498

Murashige T, Skoog F. 1962. A revised medium for rapidgrowth and bioassays with tobacco tissue culture. PhysiolPlantarum, 15, 473-497

Murray M, Thompson W. 1980. Rapid isolation of highmolecular weight plant DNA. Nucleic Acids Research,8, 4321-4325

Noctor G, Foyer C H. 1998. Ascorbate and glutathione:Keeping active oxygen under control. Annual Reviewof Plant Physiology and Plant Molecular Biology, 49,249-279

Panchuk I I, Zentgraf U, Volkov R A. 2005. Expression of theApx gene family during leaf senescence of Arabidopsisthaliana. Planta, 222, 926-932

Rizhsky L, Hallak-Herr E, van Breusegem F, RachmilevitchS, Barr J E, Rodermel S, Inze D, Mittler R. 2002. Doubleantisense plants lacking ascorbate peroxidase and catalaseare less sensitive to oxidative stress than single antisenseplants lacking ascorbate peroxidase or catalase. PlantJournal, 32, 329-342

Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S,Mittler R. 2004. When defense pathways collide, theresponse of Arabidopsis to a combination of drought andheat stress. Plant Physiology, 134, 1683-1696

Rosa S B, Caverzan A, Teixeira F K, Lazzarotto F, SilveiraJ A, Ferreira-Silva S L, Abreu-Neto J, Margis R, Margis-Pinheiro M. 2010. Cytosolic APx knockdown indicatesan ambiguous redox responses in rice. Phytochemistry,71, 548-558

Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K. 2011.Enhanced chilling tolerance at the booting stage in riceby transgenic overexpression of the ascorbate peroxidasegene, OsAPXa. Plant Cell Reports, 30, 399-406

Scandalios J G. 2002. The rise of ROS. Trends in BiochemicalSciences, 27, 483-486

Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T,Yabuta Y, Yoshimura K. 2002. Regulation and function ofascorbate peroxidase isoenzymes. Journal of ExperimentalBotany, 53, 1305-1319

Suarez R, Calderon C, Iturriaga G. 2009. Enhanced tolerance tomultiple abiotic stresses in transgenic alfalfa accumulatingtrehalose. Crop Science, 49, 1791-1799

Teixeira F K, Menezes-Benavente L, Galvao V C, Margis R,Margis-Pinheiro M. 2006. Rice ascorbate peroxidase genefamily encodes functionally diverse isoforms localized indifferent subcellular compartments. Planta 224, 300-314

Trinh T H, Ratet P, Kondorosi E, Durand P, Kamaté K, BauerP, Kondorosi A. 1998. Rapid and efficient transformationof diploid medicago truncatula and Medicago sativa ssp.falcata lines improved in somatic embryogenesis. PlantCell Reports, 17, 345-355

Winicov I. 2000. Alfin1 transcription factor overexpressionenhances plant root growth under normal and salineconditions and improves salt tolerance in alfalfa. Planta210, 416-422

Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K,Sumner L W, Wang Z Y. 2005. Overexpression of WXP1,a putative Medicago truncatula AP2 domain-containingtranscription factor gene, increases cuticular waxaccumulation and enhances drought tolerance in transgenicalfalfa (Medicago sativa). Plant Journal, 42, 689-707

Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q,Lu T. 2013. Gene knockout study reveals that cytosolicascorbate peroxidase 2 (OsAPX2) plays a critical role ingrowth and reproduction in rice under drought, salt andcold stresses. PLOS ONE, 8, e57472.
[1] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[2] JIANG Xue-qian, ZHANG Fan, WANG Zhen, LONG Rui-cai, LI Ming-na, HE Fei, YANG Xi-jiang, YANG Chang-fu, JIANG Xu, YANG Qing-chuan, WANG Quan-zhen, KANG Jun-mei. Detection of quantitative trait loci (QTL) associated with spring regrowth in alfalfa (Medicago sativa L.)[J]. >Journal of Integrative Agriculture, 2022, 21(3): 812-818.
[3] SHI Mei-qi, LIAO Xi-liang, YE Qian, ZHANG Wei, LI Ya-kai, Javaid Akhter BHAT, KAN Gui-zhen, YU De-yue. Linkage and association mapping of wild soybean (Glycine soja) seeds germinating under salt stress[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2833-2847.
[4] SHAO Ze-qiang, ZHENG Cong-cong, Johannes A. POSTMA, LU Wen-long, GAO Qiang, GAO Ying-zhi, ZHANG Jin-jing. Nitrogen acquisition, fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2240-2254.
[5] ZHAO Can, HUANG Heng, QIAN Zi-hui, JIANG Heng-xin, LIU Guang-ming, XU Ke, HU Ya-jie, DAI Qi-gen, HUO Zhong-yang. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1487-1502.
[6] LIU Xi, YI Xin, YANG Yan-rong, HUANG Qian-qian. A rice geranylgeranyl reductase is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2592-2600.
[7] LI Yu-xiang, LIU Yang, WANG Yu-hui, DING Yan-feng, WANG Shao-hua, LIU Zheng-hui, LI Gang-hua. Effects of seedling age on the growth stage and yield formation of hydroponically grown long-mat rice seedlings[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1755-1767.
[8] HUANG Shuang-jie, ZHAO Chun-fang, ZHU Zhen, ZHOU Li-hui, ZHENG Qing-huan, WANG Cai-lin. Characterization of eating quality and starch properties of two Wx alleles japonica rice cultivars under different nitrogen treatments[J]. >Journal of Integrative Agriculture, 2020, 19(4): 988-998.
[9] Qingbin WANG, ZOU Yang. China’s alfalfa market and imports: Development, trends, and potential impacts of the U.S.–China trade dispute and retaliations[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1149-1158.
[10] XUE Pao1, ZHANG Ying-xin1, LOU Xiang-yang1, ZHU Ai-ke, CHEN Yu-yu, SUN Bin, YU Ping, CHENG Shi-hua, CAO Li-yong, ZHAN Xiao-deng .
Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.)
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1838-1850.
[11] TU Xiong-bing, FAN Yao-li, Mark McNeill, ZHANG Ze-hua . Including predator presence in a refined model for assessing resistance of alfalfa cultivar to aphids[J]. >Journal of Integrative Agriculture, 2018, 17(2): 397-405.
[12] LI Dong-xia, NI Kui-kui, ZHANG Ying-chao, LIN Yan-li, YANG Fu-yu. Influence of lactic acid bacteria, cellulase, cellulase-producing Bacillus pumilus and their combinations on alfalfa silage quality[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2768-2782.
[13] TU Xiong-bing, ZHAO Hai-long, ZHANG Ze-hua. Transcriptome approach to understand the potential mechanisms of resistant and susceptible alfalfa (Medicago sativa L.) cultivars in response to aphid feeding[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2518-2527.
[14] XU Qiao-fang, MAO Xin-guo, WANG Yi-xue, WANG Jing-yi, XI Ya-jun, JING Rui-lian. A wheat gene TaSAP17-D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic Arabidopsis[J]. >Journal of Integrative Agriculture, 2018, 17(03): 507-516.
[15] LI Ming, HU Zheng, JIANG Qi-yan, SUN Xian-jun, GUO Yuan, QI Jun-cang, ZHANG Hui. GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean[J]. >Journal of Integrative Agriculture, 2018, 17(03): 530-538.
No Suggested Reading articles found!