Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (8): 1461-1470    DOI: 10.1016/S2095-3119(13)60375-5
Animal Science · Veterinary Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Development of Genome-Wide Scan for Selection Signature in Farm Animals
 ZHANG Wen-guang
1.College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, P.R.China
2.Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, P.R.China
3.Institute of ATCG, Nei Mongol Bio-Information, Hohhot 010020, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Identifying targets of positive selection in farm animals has, until recently, been frustratingly slow, relying on the analysis of individual candidate genes. Genomics, however, has provided the necessary resources to systematically interrogate the entire genome for signatures of selection. This review described important recent results derived from the application of genome-wide scan to the study of genetic changes in farm animals. These included findings of regions of the genome that showed breed differentiation, evidence of selective sweeps within individual genomes and signatures of demographic events. Particular attention is focused on the study of the implications for domestication. To date, sixteen genome-wide scans for recent or ongoing positive selection have been performed in farm animals. A key challenge is to begin synthesizing these newly constructed maps of selection into a coherent narrative of animal breed evolutionary history and derive a deeper mechanistic understanding of how animal populations improve or evolve. The major insights from the surveyed studies are highlighted and directions for future study are suggested.

Abstract  Identifying targets of positive selection in farm animals has, until recently, been frustratingly slow, relying on the analysis of individual candidate genes. Genomics, however, has provided the necessary resources to systematically interrogate the entire genome for signatures of selection. This review described important recent results derived from the application of genome-wide scan to the study of genetic changes in farm animals. These included findings of regions of the genome that showed breed differentiation, evidence of selective sweeps within individual genomes and signatures of demographic events. Particular attention is focused on the study of the implications for domestication. To date, sixteen genome-wide scans for recent or ongoing positive selection have been performed in farm animals. A key challenge is to begin synthesizing these newly constructed maps of selection into a coherent narrative of animal breed evolutionary history and derive a deeper mechanistic understanding of how animal populations improve or evolve. The major insights from the surveyed studies are highlighted and directions for future study are suggested.
Keywords:  selection signature       population genomics       genome-wide       animal breeding  
Received: 20 June 2012   Accepted:
Fund: 

The authors thank Wang Wen, Kunming Institute of Zoology, CAS, for valuable suggestions on manuscript preparation, and thank Dr. He Yanghua, China Agricultural University, for providing references. Support for this work was provided by the Inner Mongolia Autonomous Region (2010ZD11), the National Natural Science Foundation of China (30960246, 31260538) and the Key Projects in the National Science & Technology Pillar Program (30960242011BAD28B05).

Corresponding Authors:  Correspondence ZHANG Wen-guang, Tel: +86-471-4309173, E-mail: atcgnmbi@aliyun.com     E-mail:  atcgnmbi@aliyun.com

Cite this article: 

ZHANG Wen-guang. 2013. Development of Genome-Wide Scan for Selection Signature in Farm Animals. Journal of Integrative Agriculture, 12(8): 1461-1470.

[1]Akey J M. 2009. Constructing genomic maps of positiveselection in humans: Where do we go from here?Genome Research, 19, 711-722

[2]Akey J M, Ruhe A L, Akey D T, Wong A K, Connelly C F,Madeoy J, Nicholas T J, Neff M W. 2010. Trackingfootprints of artificial selection in the dog genome.Proceedings of the National Academy of Sciences ofthe United States of America, 107, 31160-31165

[3]Akey J M, Zhang G, Zhang K, Jin L, Shriver M D. 2002.Interrogating a high-density SNP map for signatures ofnatural selection. Genome Research, 12, 1805-1814

[4]Amaral A J, Ferretti L, Megens H J, Crooijmans R P M A,Nie H, Ramos-Onsins S E, Perez-Enciso M, Schook L B,Groenen M A M. 2011. Genome-wide footprints of pigdomestication and selection revealed through massiveparallel sequencing of pooled DNA. PLoS ONE, 6,e14782. doi: 10.1371/journal.pone.0014782

[5]Barendse W, Harrison B E, Bunch R J, Thomas M B, TurnerL B. 2009. Genome wide signatures of positive selection:The comparison of independent samples and theidentification of regions associated to traits. BMCGenomics, 10, 178.

[6]Dekkers J. 2004. Commercial application of marker- andgene-assisted selection in livestock: strategies andlessons. Journal of Animal Science, 82(E-Suppl.), E313-E328.Excoffier L, Hofer T, Foll M. 2009. Detecting loci underselection in a hierarchically structured population.Heredity, 103, 285-298

[7]Flori L, Fritz S, Jaffrézic F, Boussaha M, Gut I, Heath S,Foulley J L, Gautier M. 2009. The genome response toartificial selection: a case study in dairy cattle. PLoSOne, 4, e6595.

[8]Gautier M, Flori L, Riebler A, Jaffrézic F, Laloé D, Gut I,Moazami-Goudarzi K, Foulley J L. 2009. A whole genomeBayesian scan for adaptive genetic divergence in WestAfrican cattle. BMC Genomics, 21, 10:550. doi: 10.1186/1471-2164-10-550

[9]Gu J, Orr N, Park S D, Katz L M, Sulimova G, MacHugh D E,Hill E W 2009 A genome scan for positive selection inthoroughbred horses. PLoS ONE, 4, e5767. doi: 10.1371/journal.pone.0005767

[10]Harr B, Kauer M, Schlötterer C. 2002. Hitchhiking mapping- a population based fine scale mapping strategy foradaptive mutations in Drosophila melanogaster.Proceedings of the National Academy of Sciences ofthe United States of America, 99, 12949-12954

[11]Hurst L D. 2009. Fundamental concepts in genetics: geneticsand the understanding of selection. Nature ReviewsGenetic, 10, 83-93

[12]Jessica L P, James R M, Molly E M. 2011. The identificationof signatures of selection in modern horse breeds usinggenome-wide SNP data. In: Proceedings of Plant &Animal Genomes XIX Conference. Town & Country Convention Center, San Diego, CA.

[13]Joanna L K, Willie J S. 2008. Positive selection in the humangenome: from genome scans to biological significance.Annual Review of Genomics and Human Genetics, 9,143-160

[14]Kijas J W, Johannes A L, Ben H, Simon B, Laercio R P N,Magali S C, Bertrand S, Russell M, Vicki W, Kimberly G,et al. 2012. Genome-wide analysis of the world’s sheepbreeds reveals high levels of historic mixture and strongrecent selection. PLoS Biology, 10, e1001258. doi: 10.1371/journal.pbio.1001258

[15]Kim Y, Stephan W. 2002. Detecting a local signature ofgenetic hitchhiking along a recombining chromosome.Genetics, 160, 765-777

[16]Kimura R, Fujimoto A, Tokunaga K, Ohashi J. 2007. Apractical genome scan for population-specific strongselective sweeps that have reached fixation. PLoS ONE,2, e286. doi: 10.1371/journal.pone.0000286

[17]Kuhn C, Leveziel H, Renand G, Goldammer T, Schwerin M,Williams J L. 2005. Genetic markers for beef quality. In:Hocquette J F, Gigli S, eds., Indicators of Milk andBeef Quality. EAAP Publication, No. 112.Lewontin R, Krakauer J. 1973. Distribution of genefrequency as a test of theory of selective neutrality of polymorphisms. Genetics, 74, 175-195

[18]Lu D, Miller S, Sargolzaei M, Voort G V, Caldwell T, Abo-Ismail M K, Wang Z, Mah J, Plastow G, Moore S. 2010.Genome wide scan for signals of recent selection inAngus beef cattle. In: The 9th World Congress onGenetics Applied to Livestock Production. Leipzig,Germany.Matthieu F, Oscar G. 2008. A genome-scan method toidentify selected loci appropriate for both dominant andcodominant markers: A Bayesian perspective. Genetics,180, 977-993

[19]McCue M E, Bannasch D L, Petersen J L, Gurr J, Bailey E,Binns M M, Distl O, Guérin G, Hasegawa T, Hill E W, etal. 2012. A high density SNP array for the domestichorse and extant perissodactyla: utility for associationmapping, genetic diversity, and phylogeny studies.PLoS Genetics, 8, e1002451. doi: 10.1371/journal.pgen.1002

[20]Nielsen R, Bustamante C, Clark A G, Glanowski S, SacktonT B, Hubisz M J, Fledel-Alon A, Tanenbaum D M,Civello D, White T J, et al. 2005. A scan for positivelyselected genes in the genomes of humans andchimpanzees. PLoS Biology, 3, 976-985

[21]Qanbari S, Pimentel E C, Tetens J, Thaller G, Lichtner P,Sharifi A R, Simianer H. 2010. A genome-wide scan forsignatures of recent selection in Holstein cattle. AnimalGenetics, 41, 377-389

[22]Quilez J, Short A D, Martínez V, Kennedy L J, Ollier W,Sanchez A, Altet L, Francino O. 2011. A selective sweepof >8 Mb on chromosome 26 in the Boxer genome. BMCGenomics, 1;12:339. doi:10.1186/1471-2164-12-339

[23]Rubin C J, Zody M C, Eriksson J, Meadows J R, SherwoodE, Webster M T, Jiang L, Ingman M, Sharpe T, Ka S, etal. 2010. Whole-genome resequencing reveals lociunder selection during chicken domestication. Nature,464, 587-591

[24]Sabeti P C, Reich D E, Higgins J M, Levine H Z, Richter D J,Schaffner S F, Gabriel S B, Platko J V, Patterson N J,McDonald G J, et al. 2002. Detecting recent positiveselection in the human genome from haplotypestructure. Nature, 419, 832-837

[25]Sabeti P C, Schaffner S F, Fry B, Lohmueller J, Varilly P,Shamovsky O, Palma A, Mikkelsen T S, Altshuler D,Lander E S. 2006. Positive natural selection in the humanlineage. Science, 312, 1614-1620

[26]Stella A, Ajmone-Marsan P, Lazzari B and Boettcher P. 2010.Identification of selection signatures in cattle breedsselected for dairy production. Genetics, 185, 1451-1461

[27]The Bovine HapMap Consortium. 2009. Genome-widesurvey of SNP variation uncovers the genetic structureof cattle breeds. Science, 324, 528-532

[28]Thorisson G A, Stein L D. 2003. The SNP Consortiumwebsite: Past, present and future. Nucleic AcidsResearch, 31, 124-127

[29]Vaysse A, Ratnakumar A, Derrien T, Axelsson E, RosengrenPielberg G, Sigurdsson S, Fall T, Seppälä E H, HansenM S T, Lawley C T, et al. 2011. Identification of genomicregions associated with phenotypic variation betweendog breeds using selection mapping. PLoS Genetics,7,e1002316. doi: 10.1371/journal.pgen.1002316.Weir B S, Cardon L R, Anderson A D, Nielsen D M, Hill WG. 2005. Measures of human population structure showheterogeneity among genomic regions. GenomeResearch, 15, 1468-1476

[30]Williams J L. 2005. The use of marker-assisted selection inanimal breeding and biotechnology. Scientific andTechnical Review, 24, 379-391

[31]Wright S. 1951. The genetic structure of populations.Annals of Eugenics, 15, 323-354.
[1] TIAN Xiao-min, HAN Peng, WANG Jing, SHAO Pan-xia, AN Qiu-shuang, Nurimanguli AINI, YANG Qing-yong, YOU Chun-yuan, LIN Hai-rong, ZHU Long-fu, PAN Zhen-yuan, NIE Xin-hui. Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1324-1337.
[2] LI Yu-dong, BAI Xue, LIU Xin , WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2065-2075.
[3] ZHANG Xu-huan, LIU Hao, MA Xu-hui, ZHOU Gu-yi, RUAN Hong-qiang, CUI Hong-wei, PANG Jun-ling, SIFFAT Ullah Khan, ZONG Na, WANG Ren-zhong, LENG Peng-fei, ZHAO Jun. Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response to high planting density[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3514-3523.
[4] LIU Lei, WANG Heng-bo, LI Yi-han, CHEN Shu-qi, WU Ming-xing, DOU Mei-jie, QI Yi-yin, FANG Jing-ping, ZHANG Ji-sen. Genome-wide development of interspecific microsatellite markers for Saccharum officinarum and Saccharum spontaneum[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3230-3244.
[5] YU Hai-xia, DUAN Xi-xian, SUN Ai-qing, SUN Xiao-xiao, ZHANG Jing-juan, SUN Hua-qing, SUN Yan-yan, NING Tang-yuan, TIAN Ji-chun, WANG Dong-xue, LI Hao, FAN Ke-xin, WANG Ai-ping, MA Wu-jun, CHEN Jian-sheng. Genetic dissection of the grain filling rate and related traits through linkage analysis and genome-wide association study in bread wheat[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2805-2817.
[6] LIU Ting-ting, XU Miao-ze, GAO Shi-qi, ZHANG Yang, HU Yang, JIN Peng, CAI Lin-na, CHENG Ye, CHEN Jian-ping, YANG Jian, ZHONG Kai-li. Genome-wide identification and analysis of the regulation wheat DnaJ family genes following wheat yellow mosaic virus infection[J]. >Journal of Integrative Agriculture, 2022, 21(1): 153-169.
[7] WANG Kai, WU Ping-xian, CHEN De-juan, ZHOU Jie, YANG Xi-di, JIANG An-an, MA Ji-deng, TANG Qian-zi, XIAO Wei-hang, JIANG Yan-zhi, ZHU Li, QIU Xiao-tian, LI Ming-zhou, LI Xue-wei, TANG Guo-qing. Genome-wide scan for selection signatures based on whole-genome re-sequencing in Landrace and Yorkshire pigs[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1898-1906.
[8] REN Yun, CHEN Dan, LI Wen-jie, TAO Luo, YUAN Guo-qiang, CAO Ye, LI Xue-mei, DENG Qi-ming, WANG Shi-quan, ZHENG Ai-ping, ZHU Jun, LIU Huai-nian, WANG Ling-xia, LI Ping, LI Shuang-cheng . Genome-wide pedigree analysis of elite rice Shuhui 527 reveals key regions for breeding[J]. >Journal of Integrative Agriculture, 2021, 20(1): 35-45.
[9] XU Zhong, SUN Hao, ZHANG Zhe, Zhao Qing-bo, Babatunde Shittu Olasege, Li Qiu-meng, Yue Yang, Ma Pei-pei, Zhang Xiang-zhe, Wang Qi-shan, Pan Yu-chun .
Genome-wide detection of selective signatures in a Jinhua pig population
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1314-1322.
[10] NAN Jiu-hong, YIN Li-lin, TANG Zhen-shuang, CHEN Jian-hai, ZHANG Jie, WANG Hai-yan, DU Xiao-yong, LIU Xiang-dong . Genetic parameter estimation and genome-wide association study (GWAS) of red blood cell count at three stages in a Duroc×Erhualian pig population[J]. >Journal of Integrative Agriculture, 2020, 19(3): 793-799.
[11] XIA Ning, YAN Wen-bing, WANG Xiao-qi, SHAO Yu-peng, YANG Ming-ming, WANG Zhi-kun, ZHAN Yu-hang, TENG Wei-li, HAN Ying-peng, SHI Yan-guo. Genetic dissection of hexanol content in soybean seed through genome-wide association analysis[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1222-1229.
[12] CHEN Bing-ru, WANG Chun-yu, WANG Ping, ZHU Zhen-xing, XU Ning, SHI Gui-shan, YU Miao, WANG Nai, LI Ji-hong, HOU Jia-ming, LI Shu-jie, ZHOU Yu-fei, GAO Shi-jie, LU Xiao-chun, HUANG Rui. Genome-wide association study for starch content and constitution in sorghum (Sorghum bicolor (L.) Moench)[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2446-2456.
[13] LIU You-hong, TANG Liang, XU Quan, MA Dian-rong, ZHAO Ming-hui, SUN Jian, CHEN Wen-fu. Experimental and genomic evidence for the indica-type cytoplasmic effect in Oryza sativa L. ssp. japonica[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2183-2191.
[14] ZHAO Fu-ping, WEI Cai-hong, ZHANG Li, LIU Jia-sen, WANG Guang-kai, ZENG Tao, DU Li-xin. A genome scan of recent positive selection signatures in three sheep populations[J]. >Journal of Integrative Agriculture, 2016, 15(1): 162-174.
[15] GUO Yun-yan, ZHANG Long-chao, WANG Li-xian, LIU Wen-zhong. Genome-wide association study for rib eye muscle area in a Large White×Minzhu F2 pig resource population[J]. >Journal of Integrative Agriculture, 2015, 14(12): 2590-2597.
No Suggested Reading articles found!