Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (11): 1755-1766    DOI: 10.1016/S1671-2927(00)8710
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic Structure and Eco-Geographical Differentiation of Cultivated Keng Rice (Oryza sativa L. subsp. japonica) in China Revealed by Microsatellites
 ZHANG Dong-ling, WANG Mei-xing, QI Yong-wen, SUNJun-li, WANG Feng-mei, LI Jin-jie, ZHANG Hong-liang, and LI Zi-chao
1.Key Laboratory of Crop Heterosis and Utilization, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, P.R.China
2.Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R.China
3.Guangzhou Sugarcane Industry Research Institute, Guangzhou 510316, P.R.China
4.Ministry of Agriculture, Beijing 100026, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  China is one of the largest centers of genetic diversity of Oryza sativa L. and is the original centers of Oryza sativa L. subspecies japonica. Using a genetically representative core collection of 1 442 rice landraces of japonica in China, the genetic structure, differentiation, and geographic diversity were analyzed. The model-based structure analysis on varieties within three ecotypes revealed 16 eco-geographical types, which are partially accorded with some of the ecological zones in China. The differentiation of eco-geographical types contributed to the local ecological adaption and physical isolation, and maybe could be used to develop the heterotic groups of japonica. To facilitate the identification of different ecotypes and eco-geographical types, we provided the SSR character alleles of each ecotype or geographical eco-group and a rapid discriminated method based on these character alleles. Lastly, investigation on genetic diversity, genetic differentiation indicated that southwest region of China, including south of Yunnan Province, northwest of Guangxi Zhuang Autonomous Region, and southwest of Guizhou Province, possessed the highest genetic diversity and all the necessary conditions as a center of genetic diversity and should be the center of genetic diversity of rice landraces of japonica in China.

Abstract  China is one of the largest centers of genetic diversity of Oryza sativa L. and is the original centers of Oryza sativa L. subspecies japonica. Using a genetically representative core collection of 1 442 rice landraces of japonica in China, the genetic structure, differentiation, and geographic diversity were analyzed. The model-based structure analysis on varieties within three ecotypes revealed 16 eco-geographical types, which are partially accorded with some of the ecological zones in China. The differentiation of eco-geographical types contributed to the local ecological adaption and physical isolation, and maybe could be used to develop the heterotic groups of japonica. To facilitate the identification of different ecotypes and eco-geographical types, we provided the SSR character alleles of each ecotype or geographical eco-group and a rapid discriminated method based on these character alleles. Lastly, investigation on genetic diversity, genetic differentiation indicated that southwest region of China, including south of Yunnan Province, northwest of Guangxi Zhuang Autonomous Region, and southwest of Guizhou Province, possessed the highest genetic diversity and all the necessary conditions as a center of genetic diversity and should be the center of genetic diversity of rice landraces of japonica in China.
Keywords:  japonica rice      population structure      eco-geographical differentiation      China      microsatellites  
Accepted:
Fund: 

This research was supported by the National Basic Research Program of China (2010CB125904, 2004CB117201) and the National Natural Science Foundation of China (30871506).

Corresponding Authors:  Correspondence ZHANG Hong-liang, Tel: +86-10-62734018, Fax: +86-10-62731414, E-mail: zhangl@cau.edu.cn; LI Zi-chao, Tel/Fax: +86-10-62731414, E-mail: lizichao@cau.edu.cn     E-mail:  lizichao@cau.edu.cn

Cite this article: 

ZHANG Dong-ling, WANG Mei-xing, QI Yong-wen, SUNJun-li , WANG Feng-mei, LI Jin-jie, ZHANG Hong-liang, and LI Zi-chao. 2012. Genetic Structure and Eco-Geographical Differentiation of Cultivated Keng Rice (Oryza sativa L. subsp. japonica) in China Revealed by Microsatellites. Journal of Integrative Agriculture, 12(11): 1755-1766.

[1]Anderson J A, Churchill G A, Autrique J E, Tanksley S D,Sorrells M E. 1993. Optimizing parental selection forgenetic linkage maps. Genome, 36, 181-186.

[2]Bassam B J, Caetano A G, Gresshoff P M. 1991. Fast andsensitive silver staining of DNA in polyacrylamide gels.Analytical Biochemistry, 196, 80-83.

[3]Cheng C Y, Motohashi R, Tsuchimoto S, Fukuta Y, OhtsuboH, Ohtsubo E. 2003. Polyphyletic origin of cultivatedrice: based on the interspersion pattern of SINEs.Molecular Biology and Evolution, 20, 67-75.

[4]Cheng K S, Zhou J W, Lu Y X, Luo J, Huang N W, Liu G R,Wang X K. 1984. Studies on the indigenous rices inYunnan and their utilization II. Revised classificationof Asian cultivated rice. Acta Agronomica Sinica, 10,271-280.

[5]Doi K, Sobrizal K, Ikeda K, Sanchez TK, Nagai Y, YoshimuraA. 2002. Developing and evaluating rice chromosomesegment substitution lines. In: IRRI ConferenceSeptember 16-19, 2002.

[6]International Rice ResearchInstitute, Beijing. pp. 275-287.

[7]Evanno G, Regnaut S, Goudet J. 2005. Detecting the numberof clusters of individuals using the software structure:a simulation study. Molecular Ecology, 14, 2611-2620.

[8]Falush D, Stephens M, Pritchard J K. 2003. Inference ofpopulation structure using multilocus genotype data:linked loci and correlated allele frequencies. Genetics,164, 1567-1587.

[9]Glaszmann J C. 1987. Isozymes and classification of Asianrice varieties. Theoretical and Applied Genetics, 74,21-30.

[10]Goudet J. 2001. FSTAT, a program to estimate and testgene diversities and fixation indices (ver. 2.9.3). [2005-6-23]. http://www.unil.ch/izea/softwares/fstat.htmlHurlbert S H. 1971. The nonconcept of species diversity: acritique and alternative parameters. Ecology, 52, 577-586.

[11]ICGR CAAS (Institute of Crop Germplasm Resources ofChina Academy of Agricutural Science). 1996. In:Catalogue of Rice Germplasm Resources in China(1988-1993). China Agricultural Press, Beijing.

[12]Kato S H K, Hara S. 1928. On the affinity of rice varieties asshown by the fertility of rice plants. CentralAgricultural Institute of Kyushu Imperial University,2, 241-276.

[13]Li Z C, Zhang H L, Cao Y S, Qiu Z E, Wei X H, Tang S X, YuP, Wang X K. 2003. Studies on the sampling strategyfor the primary core collection of Chinese ingeniousrice. Acta Agronomic Sinica, 29, 20-24.

[14]Liu K, Muse S. 2004. PowerMarker: New Genetic DataAnalysis Software. ver. 2.7. [2006-2-5]. http://www.powermarker.net

[15]Liu S, Cheng H, Wang H, Zhu Y G. 2002. DNApolymorphism of main restorer lines of hybrid rice inChina. Chinese Journal of Rice Science, 16, 1-5.

[16]Liu W, Shi Y L, Ma H W, Wang J, Li Z C, Zhang H. 2005.Study on heterotic ecotypes of Japonica rice based onthe heterosis. Acta Botanica Boreali-OccidentaliaSinica, 25, 64-69.

[17]Londo J P, Chiang Y C, Hung K H, Chiang T Y, Schaal B A.2006. Phylogeography of Asian wild rice, Oryzarufipogon, reveals multiple independent domesticationsof cultivated rice, Oryza sativa L. Proceedings of theNational Academy of Sciences of the United States ofAmerica, 103, 9578-9583.

[18]Mantel N. 1967. The detection of disease clustering and ageneralised regression approach. Cancer Research, 27,209-220.

[19]Melchinger A E, Lee M, Lamkey K R, Hallauer A R,Woodman W L. 1990. Genetic diversity for restrictionlength polymorphisms and heterosis for two diallelesets of maize inbreds. Theoretical and AppliedGenetics, 80, 488-496.

[20]Miller M P. 1997. Tools for Population Genetic Analyses(TFPGA) 1.3: A Windows Program for the Analysis of Allozyme and Molecular Population Genetic Data.[2006-6-5]. http://www.marksgenticsoftware.net/_vti_bin/shtml.exe/tfpga.htmNei M. 1987. Molecular Evolutionary Genetics. ColumbiaUniversity Press, New York.

[21]Nei M, Tajima F, Tateno T. 1983. Accuracy of estimatedphylcgenetic trees from molecular data. Journal ofMolecular Evolution, 19, 153-170.

[22]Oka H I. 1988. Origin of Cultivated Rice. Japan ScienceSociety Press, Tokyo.Panaud O, Chen X, McCouch S R. 1996. Development ofmicrosatellite markers and characterization of simplesequence length polymorphism (SSLP) in rice (Oryzasativa L.). Molecular Genetics and Gemomics, 252, 597-607.

[23]Pritchard J K, Stephens M, Donnelly P. 2000. Inference ofpopulation structure using multilocus genotype data.Genetics, 155, 945-959.

[24]Qi YW, Zhang D L, Zhang H L, Wang M X, Sun J L, WangM X, Sun J L, Wei X H, Qui Z E, Tang S X, et al. 2006.Genetic diversity of rice cultivars (Oryza sativa L.) inChina and the temporal trends in recent fifty years.Chinese Science Bulletin, 51, 681-688.

[25]Rohlf F. 1997. NTSYS-pc: Numerical Taxonomy andMultivariate Analysis System. Applied Biostatistics,Setauket, NY.Rosenberg N A. 2002. Distruct: A Program for theGraphical Display of Structure Results. [2006-7-2].http://www.cmb.usc.edu/~noahr/distruct.html

[26]Saitou N, Nei M. 1987. The neighbor-joining method: anew method for reconstructing phylogenetic trees.Molecular Biology and Evolution, 4, 406-425.

[27]Sano R, Morishima H. 1992. Indica-japonica differentiationof rice cultivars viewed from the variation in keycharacters and isozymes with special reference to landraces from the Himalayan hilly areas. Theoretical andApplied Genetics, 84, 266-274.

[28]Second G. 1982. Origin of the genic diversity of cultivatedrice (Oryza spp.): study of the polymorphism scored at40 isozyme loci. Japanese Journal of Genetics, 57, 25-57.

[29]Sokal R R. 1979. Testing statistical significance ofgeographic variation patterns. Systematic Zoology, 28,227-232.

[30]Stuber C W, Lincoln S E, Wolff D W, Helentjarisn T, LanderE S. 1992. Identification of genetic factors contributingto heterosis in a hybrid from two elite maize inbred linesusing molecular markers. Genetics, 132, 823-839.

[31]Takezaki N, Nei M. 1996. Genetic distances andreconstruction of phylogenetic trees from microsatelliteDNA. Genetics, 144, 389-399.

[32]Ting Y. 1957. The origin and evolution of cultivated rice inChina. Acta Agronomic Sinica, 8, 243-260.

[33]Vigouroux Y, Matsuoka Y, Doebley J. 2003. Directionalevolution for microsatellite size in maize. MolecularBiology and Evolution, 20, 1480-1483.

[34]Wang M X, Zhang H L, Zhang D L, Pan D J, Li D Y, Fan ZL, Qi Y W, Sun J L, Yang Q W, Li C, et al. 2008.geographical genetic diversity and divergence ofcommon wild rice (O. rufipogon Griff.) in China. ChineseScience Belletin, 53, 3559-3566.

[35]Weir B S, Cockerham C C. 1984. Estimation F-statistics forthe analysis of population structure. Evolution, 38,1358-1370.

[36]Wilcoxon F. 1945. Individual comparisons by rankingmethods. Biometrics Bulletin, 1, 80-83.

[37]Zhang D L, Zhang H L, Wang M X, Qi YW, Sun J L, WangF M, Wei X H, Han L Z, Qiu Z E, Tang S X, et al. 2009.Genetic structure and differentiation of Oryza sativa L.in China revealed by microsatellites. Theoretical andApplied Genetics, 119, 1105-1117.

[38]Zhang D L, Zhang H L, Wei X H, Qi YW, Wang M X, SunJ L, Ding L, Tang S X, Qui Z E, Cao Y S, et al. 2007a.Genetic structure and diversity of Oryza sativa L. inGuizhou, China. Chinese Science Bulletin, 52, 343-351.

[39]Zhang H L, Sun J L, Wang M X, Liao D Q, Zeng YW, ShenS Q, Yu P, Mu P, Wang X K, Li Z C. 2007b. Geneticstructure and phylogeography of rice landraces inYunnan, China revealed by SSR. Genome, 50, 72-83.

[40]Zhang H L, Zhang D L, Wang M X, Sun J L, Qi Y W, Li J J,Wei X H, Han L Z, Qiu Z E, Tang S X, et al. 2011. A corecollection and mini core collection of Oryza sativa L. inChina. Theoretical and Applied Genetics, 122, 49-61.
[1] Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2778-2791.
[2] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[3] Dian Chen, Xiangming Fang, Yu Chen, Xiaodong Zheng, Zhuo Chen, Rodney B.W. Smith.

The impact of the Rural Minimum Living Standard Guarantee (Rural Dibao) Program on child nutrition outcomes [J]. >Journal of Integrative Agriculture, 2024, 23(2): 444-456.

[4] Yi Cui, Qiran Zhao, Thomas Glauben, Wei Si. The impact of Internet access on household dietary quality: Evidence from rural China[J]. >Journal of Integrative Agriculture, 2024, 23(2): 374-383.
[5] Xiao Han, Kaiyu Lyu, Fengying Nie, Yuquan Chen.

Resilience effects for household food expenditure and dietary diversity in rural western China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 384-396.

[6] Jie Xue, Xianglin Zhang, Songchao Chen, Bifeng Hu, Nan Wang, Zhou Shi.

Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 283-297.

[7] ZHANG Sha, YANG Shan-shan, WANG Jing-wen, WU Xi-fang, Malak HENCHIRI, Tehseen JAVED, ZHANG Jia-hua, BAI Yun. Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years' winter wheat yield over the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2865-2881.
[8] LI Dong-qing, ZHANG Ming-xue, LÜ Xin-xin, HOU Ling-ling. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2567-2576.
[9] YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo. Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2509-2520.
[10] YANG Rui, XU Hang. Water diversion and agricultural production: Evidence from China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1244-1257.
[11] WANG Deng-feng, YANG Xue-yun, WEI Yu-rong, LI Jian-jun, BOLATI Hongduzi, MENG Xiao-xiao, TUERXUN Gunuer, NUERDAN Nuerbaiheti, WU Jian-yong. Genome characterization of the Caprine arthritis-encephalitis virus in China: A retrospective genomic analysis of the earliest Chinese isolates[J]. >Journal of Integrative Agriculture, 2023, 22(3): 872-880.
[12] HOU Jing, ZHOU Li, Jennifer IFFT, YING Rui-yao. The role of time preferences in contract breach: Evidence from Chinese poultry farmers participating in contract farming[J]. >Journal of Integrative Agriculture, 2023, 22(2): 623-641.
[13] SHI Peng-fei, HUANG Ji-kun. Rural transformation, income growth, and poverty reduction by region in China in the past four decades[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3582-3595.
[14] LIU Cheng, ZHAO Ning, JIANG Zhi-cheng, ZHANG Huan, ZHAI Hong, HE Shao-zhen, GAO Shao-pei, LIU Qing-chang. Analysis of genetic diversity and population structure in sweetpotato using SSR markers[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3408-3415.
[15] YANG Xu, ZHANG Jia-hua, YANG Shan-shan, WANG Jing-wen, BAI Yun, ZHANG Sha. Modelling the crop yield gap with a remote sensing-based process model: A case study of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2993-3005.
No Suggested Reading articles found!