Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (9): 1545-1554    DOI: 10.1016/S1671-2927(00)8687
SOIL & FERTILIZER · AGRI-ECOLOGY & ENVIRONMENT Advanced Online Publication | Current Issue | Archive | Adv Search |
On-Farm Assessment of Biosolids Effects on Nitrogen and Phosphorus Accumulation in Soils
 LI Qiong, LI Ju-mei, CUI Xi-long, WEI Dong-pu,  MA Yi-bing
1.Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing100048, P.R.China
2.Key Laboratory of Plant Nutrition and Nutrient Cycling, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
3.Beijing Drainage Group Co. Ltd., Beijing 100061, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  A field plot experiment in a calcareous soil with wheat and maize rotation was carried out for 2 yr. The study aimed to investigate the effects of biosolids (sewage sludge or chicken manure) application on nitrogen (N) and phosphorus (P) accumulation in soils and to develop a model for the effects of biosolids application on available P (Olsen-P) accumulation in soils, by which the quantities of biosolids that can be safely applied to agricultural soils were estimated. The results showed that heavy application of biosolids to agricultural soils based on the N requirement of a wheat-maize rotation cropping system will oversupply P. Soil total N was increased by 0.010 g kg-1 at application rate of 1 ton sewage sludge per hectare. The high ratio of N to P in grains of wheat and maize (from 4.0 to 7.6) and low ratio of N to P in biosolids (<2) led to more surplus P accumulated in soils. Although plant yields and P uptake by plants increased with increasing quantities of applied biosolids in soils, there was still an average 2.87 mg kg-1 increase in Olsen-P in the plough layer treated with biosolids for every 100 kg P ha-1 surplus. A predictive model was developed based upon the initial Olsen-P in soils, P input rates, crop yield, soil pH, and cultivation time. From the model, it is suggested that sewage sludge could be applied to calcareous soils for 12 yr using the recommended application rate (9 tons ha-1 yr-1). The field results will be helpful in achieving best management of biosolids application for agricultural production and environmental protection.

Abstract  A field plot experiment in a calcareous soil with wheat and maize rotation was carried out for 2 yr. The study aimed to investigate the effects of biosolids (sewage sludge or chicken manure) application on nitrogen (N) and phosphorus (P) accumulation in soils and to develop a model for the effects of biosolids application on available P (Olsen-P) accumulation in soils, by which the quantities of biosolids that can be safely applied to agricultural soils were estimated. The results showed that heavy application of biosolids to agricultural soils based on the N requirement of a wheat-maize rotation cropping system will oversupply P. Soil total N was increased by 0.010 g kg-1 at application rate of 1 ton sewage sludge per hectare. The high ratio of N to P in grains of wheat and maize (from 4.0 to 7.6) and low ratio of N to P in biosolids (<2) led to more surplus P accumulated in soils. Although plant yields and P uptake by plants increased with increasing quantities of applied biosolids in soils, there was still an average 2.87 mg kg-1 increase in Olsen-P in the plough layer treated with biosolids for every 100 kg P ha-1 surplus. A predictive model was developed based upon the initial Olsen-P in soils, P input rates, crop yield, soil pH, and cultivation time. From the model, it is suggested that sewage sludge could be applied to calcareous soils for 12 yr using the recommended application rate (9 tons ha-1 yr-1). The field results will be helpful in achieving best management of biosolids application for agricultural production and environmental protection.
Keywords:  biosolids      soil      nitrogen      phosphorus  
Received: 22 December 2011   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (30971868) and the Beijing Drainage Group Co. Ltd., China.

Corresponding Authors:  Correspondence LI Ju-mei, Tel: +86-10-82108649, E-mail: jmli@caas.ac.cn   

Cite this article: 

LI Qiong, LI Ju-mei, CUI Xi-long, WEI Dong-pu, MA Yi-bing. 2012. On-Farm Assessment of Biosolids Effects on Nitrogen and Phosphorus Accumulation in Soils. Journal of Integrative Agriculture, 12(9): 1545-1554.

[1]Bar-Tal A, Yermiyahu U, Beraud J, Keinan M, Rosenberg R, Zohar D, Rosen V, Fine P. 2004. Nitrogen, phosphorus, and potassium uptake by wheat and their distribution in soil following successive, annual compost applications. Journal of Environmental Quality, 33, 1855-1865.

[2]Benke M B, Hao X, Chang C. 2008. Effects of long term cattle manure applications on soil, water and crops: Implications for animal and human health. In: Banuelos . 2012, CAAS. All rights reserved. Published by Elsevier Ltd. G S, Lin Z Q, eds., Development and Uses of Biofortified Agricultural Products. CRC Press, Boca Raton, Florida, pp. 135-151.

[3]Cassman K G, de Datta S K, Amarante S T. 1996. Long-term comparison of the agronomic efficiency and residual benefits of organic and inorganic nitrogen sources for tropical lowland rice. Experimental Agriculture, 32, 427-444.

[4]CEC (Commission of the European Communities). 2002. Report from the Commission to the Council and the European Parliament on the Implementation of Community Waste Legislation, CEC, Brussels. Coker E G, Carlton-Smith C H. 1986. Phosphorus in sewage sludges as a fertilizer. Waste Manage and Research, 4, 303-319.

[5]Crouse D A, Sierzputowska-Gracz H, Mikkelsen R L, Wollum A G. 2002. Monitoring phosphorus mineralization from poultry manure using phosphatase assays and phosphorus-31 nuclear magnetic resonance spectroscopy. Communications in Soil Science and Plant Analysis, 33, 1205-1217.

[6]Eghball B, Power J F. 1999. Phosphorus-and nitrogenbased manure and compost applications corn production and soil phosphorus. Soil Science Society of America Journal, 63, 895-901.

[7]Eldridge S M, Chan K Y, Xu Z H, Chen C R, Barchia I. 2008. Plant-available nitrogen supply from granulated biosolids: implications for land application guidelines. Australian Journal of Soil Research, 46, 423-436.

[8]Fine P, Mingelgrin U. 1996. Release of phosphorus from waste activated sludge. Soil Science Society of America Journal, 60, 505-511.

[9]Gilbertson C B, Norstadt F A, Mathers A C, Holt R F, Barnett A P, McCalla T M, Onstad C A, Young R A. 1979. Animal waste utilization on cropland and pastureland: a manual for evaluating agronomic and environmental effects. In: Utilization Research. Report 6. WSEPA. Washington, USA.

[10]He Z L, Alva A K, Yan P, Li Y C, Calvert D V, Stoffella P J, Banks D J. 2000. Nitrogen mineralization and transformation from composts and biosolids during field incubation in a sandy soil. Soil Science, 165, 161-169.

[11]Heckrath G, Brookes P C, Poulton P R, Goulding K W T. 1995. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. Journal of Environmental Quality, 24, 904-910.

[12]Hedley M, McLaughlin M J. 2005. Reactions of phosphate fertilizers and by-products in soils. In: Sims J T, Sharpley A N, eds., Phosphorus: Agriculture and the Environment American Society of Agronomy, ASA, CSSA and SSSA, Madison, USA. pp. 181-252.

[13]Huang S M, Ma Y B, Bao D J, Guo D D, Zhang S Q. 2011. Manures behave similar to superphosphate in phosphorus accumulation in long-term field soils. International Journal of Plant Production, 5, 135-146.

[14]Jin V J, Johnson M-V V, Haney R L, Arnold J G. 2011. Potential carbon and nitrogen mineralization in soils from a perennial forage production system amended with class B biosolids. Agriculture, Ecosystems and Environment, 141, 461-465.

[15]Li Y X, Chen T B, Luo W, Huang Q F, Wu J F. 2003. Contents of organic matter and major nutrients and the ecological effect related to land application of sewage sludge in China. Acta Ecologica Sinica, 23, 2464-2474. (in Chinese)

[16]Ma Y B, Li J M, Li X Y, Tang X, Liang Y C, Huang S M, Wang B R, Liu H, Yang X Y. 2009. Phosphorus accumulation and depletion in soils in wheat-maize cropping systems: modeling and validation. Field Crops Research, 110, 207-212.

[17]McCoy J L, Sikora L T, Weil R R. 1986. Plant availability of phosphorus in sewage sludge compost. Journal of Environmental Quality, 15, 403-409.

[18]McDowell R, Sharpley A N, Brookes P, Poulton P. 2001. Relationship between soil test phosphorus and phosphorus release to solution. Soil Science, 166, 137-149.

[19]Mo C H, Cai Q Y, Wu Q T, Li G R. 2001. Research advances of microbiological method for heavy metal removal from municipal sludge. Chinese Journal of Applied and Environmental Biology, 7, 511-515. (in Chinese)

[20]MHURD (Ministry of Housing and Urban-Rural Development of China). 2009. Disposal of sludge from municipal wastewater treatment plant-Control standards for agricultural use (GJ/T309-2009). Stanard Press of China, Beijing, China. (in Chinese)

[21]NSW EPA. 1997. Environmental guidelines: use and disposal of biosolids products. Environmental Protection Authority, New South Wales, Sydney. O¡¯Connor G A, Sarkar D, Brinton S R, Elliott H A, Martin F G. 2004. Phytoavailability of biosolids phosphorus Journal of Environmental Quality, 33, 703-712.

[22]Osborn R W, de Samblanx G W, Thevissen K, Goderis I, Torrekens S, van Leuven F, Attenborough S, Rees S B, Broekaert W F. 1995. Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Letters, 368, 257-262.

[23]Owens L B, Shipitalo M J. 2006. Surface and subsurface phosphorus losses from fertilized pasture systems in ohio. Journal of Environmental Quality, 35, 1101-1109.

[24]Page A L, Millar R H, Keeney D R. 1982. Methods of Soil Analysis: Part 2. American Society of 321 Agronomy/ Soil Science Society of America, Madison, Wisconsin, USA. Pommel B. 1981. Phosphorus value of sludges related to their metal content. In: Hucker T W G, Catroux G, eds., Phosphorus in Sewage Sludge and Animal Waste Slurries. Proceedings of the EEC Seminar-Organised Jointly by the CEC and the Institute for Soil Fertility. Springer, Dordrecht. pp. 137-147.

[25]Pu G, Bell M, Barry G, Want P. 2008. Fate of applied biosolids nitrogen in a cut and remove forage system on an alluvial clay loam soil. Australian Journal of Soil Research, 46, 703-709.

[26]Rostagno C M, Sosebee R E. 2001. Biosolids application in the chihuahuan deserts: effects of runoff water quality. Journal of Environmental Quality, 30, 160-170.

[27]Smith S R, Woods V, Evans T D. 1998. Nitrate dynamics in biosolids-treated soils. I. influence of biosolids type and soil type. Bioresource Technology, 66, 139-149.

[28]Spinosa L, Vesilind P A. 2001. Sludge into Biosolids. IWA Publishing, London. SPSS (Statistical Package for the Social Science). 2007. SPSS Base 15.0 for Windows. User’s Guide SPSS Inc., Chicago. p. 736.

[29]Tang X, Li J M, Ma Y B, Hao X, Li X Y. 2008. Phosphorus efficiency in long-term (15 years) wheat-maize cropping systems with various soil and climate conditions. Field Crops Research, 108, 231-237.

[30]Toor G S, Cade-Menun B J, Sims J T. 2005. Establishing a linkage between phosphorus forms in dairy diets, feces, and manures. Journal of Environmental Quality, 34, 1380-1391.

[31]Triner N G, Rudd T, Smith S R, Dearley T. 2001. Phosphorus and agricultural recycling of sewage sludge. In: Dhir R K, Limbachiya M C, McCarthy M J, eds., Recycling and Reuse of Sewage Sludge. Thomas Telford Publishing, Heron Quay, London. pp. 125-140.

[32]Whalen J, Chang C. 2001. Phosphorus accumulation in cultivated soils from long-term annual applications of cattle feedlot manure. Journal of Environmental Quality, 30, 229-237.

[33]Young E O, Ross D S. 2001. Phosphate release from seasonally flooded soils: a laboratory microcosm study Journal of Environmental Quality, 30, 91-101.
[1] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[2] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[3] Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022[J]. >Journal of Integrative Agriculture, 2026, 25(2): 436-447.
[4] Miaomiao Wang, Hongsong Chen, Wei Zhang, Kelin Wang. Variations and major driving factors for soil nutrients in a typical karst region in Southwest China[J]. >Journal of Integrative Agriculture, 2026, 25(2): 424-435.
[5] Valensi Kautsar, Takamori Kanno, Kaho Sakai, Riza Kurnia Sabri, Keitaro Tawaraya, Kazunobu Toriyama, Kazuhiko Kobayashi, Weiguo Cheng. Reconstructed organic rice fields: Effects on soil organic carbon, total nitrogen, their mineralization, and rice yield in Japanese Andosols[J]. >Journal of Integrative Agriculture, 2026, 25(2): 493-500.
[6] Shunjie Zhu, Liangliang Xu, Chengzhong He, Yongxing Guo, Changqun Duan, Xin Jiang, Shiyu Li, Hailong Yu. Effects of land use type on soil organic carbon in different soil types[J]. >Journal of Integrative Agriculture, 2026, 25(2): 540-552.
[7] Ligong Peng, Sicheng Deng, Wentao Yi, Yizhu Wu, Yingying Zhang, Xiangbin Yao, Pipeng Xing, Baoling Cui, Xiangru Tang. Partial organic fertilizer substitution and water-saving irrigation can reduce greenhouse gas emissions in aromatic rice paddy by regulating soil microorganisms while increasing yield and aroma[J]. >Journal of Integrative Agriculture, 2026, 25(1): 273-289.
[8] Shending Chen, Ahmed S. Elrys, Siwen Du, Wenyan Yang, Zucong Cai, Jinbo Zhang, Lei Meng, Christoph Müller. Soil nitrogen dynamics regulate differential nitrogen uptake between rice and upland crops[J]. >Journal of Integrative Agriculture, 2026, 25(1): 302-312.
[9] Lei Wu, Jing Hu, Muhammad Shaaban, Jun Wang, Kailou Liu, Minggang Xu, Wenju Zhang. Long-term manure amendment enhances N2O emissions from acidic soil by alleviating acidification and increasing nitrogen mineralization[J]. >Journal of Integrative Agriculture, 2026, 25(1): 262-272.
[10] Haobo Fan, Farman Wali, Pengjuan Hu, Haixia Dong, Haiqiang Li, Dan Liang, Jingru Shen, Mingxia Gao, Hao Feng, Benhua Sun. Sustainable phosphorus (P) management: Impact of low P input with enhancement measures on soil P fractions and crop yield performance on a calcareous soil[J]. >Journal of Integrative Agriculture, 2026, 25(1): 290-301.
[11] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[12] Xin Zhao, Hai Liang, Danna Chang, Jiudong Zhang, Xingguo Bao, Heng Cui, Weidong Cao. Maize–green manure intercropping improves maize yield and P uptake by shaping the responses of roots and soil [J]. >Journal of Integrative Agriculture, 2026, 25(1): 313-325.
[13] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[14] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[15] Hanqiang Lü, Aizhong Yu, Qiang Chai, Feng Wang, Yulong Wang, Pengfei Wang, Yongpan Shang, Xuehui Yang. No-tillage with total green manure incorporation: A better strategy to higher maize yield and nitrogen uptake in arid irrigation areas[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3403-3417.
No Suggested Reading articles found!