Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (7): 1189-1198    DOI: 10.1016/S1671-2927(00)8646
SOIL & FERTILIZER · AGRI-ECOLOGY & ENVIRONMENT Advanced Online Publication | Current Issue | Archive | Adv Search |
Determination of Tetracyclines and Their Epimers in Agricultural Soil Fertilized with Swine Manure by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry
 ZHENG Wen-li, ZHANG Li-fang, ZHANG Ke-yu, WANG Xiao-yang,  XUE Fei-qun
Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang 200241, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  A rapid, sensitive and specific ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS) method was developed for the analysis of tetracycline antibiotics, including tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and their 4-epimers (4-epiTCs) in agricultural soil fertilized with swine manure. Soil samples were extracted and cleaned-up with 10 mL EDTA-McIlvaine buffer solution (pH 4.0), then cleaned-up and pre-concentrated using the Oasis MAX cartridge and then eluted with 1 mL solution by mixing formic acid, methanol and water at a ratio of 2:15:83 (v/v/v). The purified samples were separated by an ACQUITY UPLC BEH C18 column using acetonitrile and water containing 0.1% formic acid mobile phase and detected by a single quadrupole MS. The limits of detection for the soil extraction method (LODsoil) ranged from 0.6-2.5 μg kg-1 with recoveries from 23.3-159.2%. Finally, the method was applied to an agricultural field in an area with intensive pig-fattening farming. Tetracyclines were detected in soil from 2.8 to 42.4 μg kg-1 soil. These results demonstrate that soil from swine farms can become severely contaminated with tetracycline antibiotics and their metabolites.

Abstract  A rapid, sensitive and specific ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS) method was developed for the analysis of tetracycline antibiotics, including tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and their 4-epimers (4-epiTCs) in agricultural soil fertilized with swine manure. Soil samples were extracted and cleaned-up with 10 mL EDTA-McIlvaine buffer solution (pH 4.0), then cleaned-up and pre-concentrated using the Oasis MAX cartridge and then eluted with 1 mL solution by mixing formic acid, methanol and water at a ratio of 2:15:83 (v/v/v). The purified samples were separated by an ACQUITY UPLC BEH C18 column using acetonitrile and water containing 0.1% formic acid mobile phase and detected by a single quadrupole MS. The limits of detection for the soil extraction method (LODsoil) ranged from 0.6-2.5 μg kg-1 with recoveries from 23.3-159.2%. Finally, the method was applied to an agricultural field in an area with intensive pig-fattening farming. Tetracyclines were detected in soil from 2.8 to 42.4 μg kg-1 soil. These results demonstrate that soil from swine farms can become severely contaminated with tetracycline antibiotics and their metabolites.
Keywords:  tetracyclines      epimers      ultra performance liquid chromatography      soil      solid phase extraction  
Received: 15 April 2011   Accepted:
Corresponding Authors:  XUE Fei-qun, Tel: +86-21-34293460, Fax: +86-21-34293396, E-mail: fqxue@shvri.ac.cn   

Cite this article: 

ZHENG Wen-li, ZHANG Li-fang, ZHANG Ke-yu, WANG Xiao-yang, XUE Fei-qun. 2012. Determination of Tetracyclines and Their Epimers in Agricultural Soil Fertilized with Swine Manure by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Integrative Agriculture, 12(7): 1189-1198.

[1]Aga D S, O’Connor S, Ensley S, Payero J O, Snow D, Tarkalson D. 2005. Determination of the persistence of tetracycline antibiotics and their degradates in manureamended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. Journal of Agricultural Food Chemistry, 53, 7165-7171.

[2]Anderson C R, Rupp H S, Wu W H. 2005. Complexities in tetracycline analysis-chemistry, matrix extraction, cleanup, and liquid chromatography. Journal of Chromatography (A), 1075, 23-32.

[3]Ben W W, Qiang Z M, Adams C, Zhang H Q, Chen L P. 2008. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solidphase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography (A), 1202, 173-180.

[4]Bendahl L, Stürup S, Gammelgaard B, Hansen S H. 2005. UPLC-ICP-MS-a fast technique for speciation analysis. Journal of Analytical Atomic Spectrometry, 20, 1287-1289.

[5]Blackwell P A, Holten Lützhøft H C, Ma H P, Halling-Sørensen B, Boxall A B A, Kay P. 2004. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection. Talanta, 64, 1058-1064.

[6]Cherlet M, Schelkens M, Croubels S, Backer P D. 2003. Quantitative multi-residue analysis of tetracyclines and their 4-epimers in pig tissues by high-performance liquid chromatography combined with positive-ion electrospray ionization mass spectrometry. Analytica Chimica Acta, 492, 199-213.

[7]Christian T, Schneider R J, Färber H A, Skutlarek D, Goldbach H E. 2003. Determination of antibiotic residues in manure, soil and surface waters. Acta Hydrochim Hydrobiol, 31, 36-44.

[8]Cooper A D, Stubbings G W F, Kelly M, Tarbin J A, Farrington W H H, Shearer G. 1995. Improved method for the on-line metal chelate affinity chromatography-high-performance liquid chromatographic determination of tetracycline antibiotics in animal products. Journal of Chromatography (A), 812, 312-326.

[9]De A J, Dong M Z, Yu J W, Hao W Z, Jin L C. 2008. Adsorption and cosorption of Cu (II) and tetracycline on two soils with different characteristics. Geoderma, 146, 224-230.

[10]Hamscher G, Sczesny S, Höper H, Nau H. 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 74, 1509-1518.

[11]Hamscher G, Pawelzick H T, Höper H, Nau H. 2005. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environmental Toxicology and Chemistry, 24, 861-872.

[12]Jacobsen A M, Halling-Sorensen B, Ingerslev F, Hansen S H. 2004. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurized liquid extraction, followed by solid-phase extraction and liquid chromatographytandem mass spectrometry. Journal of Chromatography (A), 1038, 157-170.

[13]Jin H, Kumar A P, Paik D H, Ha K C, Yoo Y J, Lee Y I. 2010. Trace analysis of tetracycline antibiotics in human urine using UPLC-QToF mass spectrometry. Microchemical Journal, 94, 139-147.

[14]Jia A, Xiao Y, Hu J Y, Asami M, Kunikane S. 2009. Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography (A), 1216, 4655-4662.

[15]Karci A, Balcioglu I A. 2009. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Science of the Total Environment, 407, 4652-4664.

[16]de Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montcsissa C. 2003. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere, 52, 203-212.

[17]Lindsey M E, Meyer M, Thurman E M. 2000. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73, 4640-4646.

[18]O’Connor S, Aga D S. 2007. Analysis of tetracycline antibiotics in soil: advances in extraction, clean up ,and quantification. Trends in Analytical Chemistry, 26, 456-462.

[19]O’Connor S, Locke J, Aga D S. 2007. Addressing the challenges of tetracycline analysis in soil: extraction, clean-up, and matrix effects in LC-MS. Journal of Environmental Monitoring, 9, 1254-1262.

[20]Oka H, Ito Y, Ikai Y, Kagami T, Harada K. 1998. Mass spectrometric analysis of tetracycline antibiotics in foods. Journal of Chromatography (A), 812, 309-319.

[21]Oka H, Ito Y, Matsumoto H. 2000. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography A, 882, 109-133.

[22]Rabølle M, Spliid N H. 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40, 715-722.

[23]Revert S, Borrull F, Plcurull E, Marc R M. 2003. Determination of antibiotic compounds in water by solid-phase extraction high-performance liquid chromatography (electrospray) mass spectrometry. Journal of Chromatography (A), 1010, 225-232.

[24]Schenck F J, Callery P S. 1998. Chromatographic methods of analysis of antibiotics in milk. Journal of Chromatography (A), 812, 99-109.

[25]Tereza T, Jana O, Petr N, Miroslav F. 2010. High-throuthput analysis of tetracycline antibiotics and their epimers in liquid manure using ultra performance liquid chromatography with UV detection. Chemosphere, 78, 353-359.

[26]Xu J Z, Ding T, Wu B, Yang W Q, Zhang X Y, Liu Y, Shen C Y, Jiang Y. 2008. Analysis of tetracycline residues in royal jelly by liquid chromatography-tandem mass spectrometry. Journal of Chromatography (B), 868, 42-48.

[27]de Zan M M, García M D Gil, Culzoni M J, Siano R G, Goicoechea H C, Galera M M. 2008. Solving matrixeffects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modeling liquid chromatography data with multivariate curve resolutionalternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms I. effect of signal pre-treatment. Journal of Chromatography (A), 1179, 106-114.
[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[3] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[4] Jiahong Yu, Bingbing Luo, Yujie Yang, Suna Ren, Lei Xu, Long Wang, Xianqing Jia, Yiyong Zhu, Keke Yi. Polyphosphate-enriched algae fertilizer as a slow-release phosphorus resource can improve plant growth and soil health[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3656-3670.
[5] Vicente José Laamon Pinto Simões, Lóren Pacheco Duarte, Rafaela Dulcieli Daneluz Rintzel, Amanda Posselt Martins, Tales Tiecher, Leonardo Dallabrida Mori, Carolina Bremm, Marco Aurélio Carbone Carneiro, Paulo César de Faccio Carvalho. System fertilization improves soil quality and increases primary production in an integrated crop-livestock system[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3671-3688.
[6] Yang Chen, Xuyu Feng, Xiao Zhao, Xinmei Hao, Ling Tong, Sufen Wang, Risheng Ding, Shaozhong Kang. Biochar application enhances soil quality by improving soil physical structure under particular water and salt conditions in arid region of Northwest China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3242-3263.
[7] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[8] Xiaoqiang Liu, Mingqi Li, Dong Xue, Shuai He, Junliang Fan, Fucang Zhang, Feihu Yin. Optimal drip irrigation leaching amount and timing enhanced cotton fiber yield, quality and nitrogen uptake by regulating soil salinity and nitrate nitrogen in saline-alkaline fields[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2389-2409.
[9] Yulu Chen, Li Huang, Jusheng Gao, Zhen Zhou, Muhammad Mehran, Mingjian Geng, Yangbo He, Huimin Zhang, Jing Huang. Long-term Chinese milk vetch incorporation promotes soil aggregate stability by affecting mineralogy and organic carbon[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2371-2388.
[10] Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2410-2424.
[11] Xueqi Guo, Weining Qi, Yao Feng, Zhaojun Li. Degradation of oxytetracycline in soil by a Pseudomonas strain[J]. >Journal of Integrative Agriculture, 2025, 24(5): 2002-2014.
[12] Zhechao Dou, Jing Ma, Kunguang Wang, Qiaofang Lu, Zhiguang Chi, Dongming Cui, Chang Pan, Zhuchi He, Yuanmei Zuo. Use of soil nematodes as indicators of soil and plant health in continuous cropping systems: A case study in dragon fruit[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1987-2001.
[13] Hongyu Lin, Jing Zheng, Minghua Zhou, Peng Xu, Ting Lan, Fuhong Kuang, Ziyang Li, Zhisheng Yao, Bo Zhu. Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1542-1561.
[14] Ying Zhao, Xiaozeng Han, Chen Qiu, Wenxiu Zou, Xinchun Lu, Jun Yan, Xu Chen. The enhancements of pore morphology and size distribution by straw return are mediated by increases in aggregate-associated carbon and nitrogen[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1562-1576.
[15] Chao Ma, Zhifeng He, Jiang Xiang, Kexin Ding, Zhen Zhang, Chenglong Ye, Jianfei Wang, Yusef Kianpoor Kalkhajeh. A meta-analysis to explore the impact of straw decomposing microorganism inoculant-amended straw on soil organic carbon stocks[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1577-1587.
No Suggested Reading articles found!