油料作物Oil Crops
在植物中,胞质果糖-1,6-二磷酸酶(cyFBPase)和景天庚酮糖-1,7-二磷酸酶(SBPase)酶活性的提高与植物增产密切相关。在本研究中,通过在烟草(Nicotiana tabacum)中过表达油菜cDNA,cyFBPase和SBPase基因表达水平显著提高。在转双基因cyFBPase/SBPase (TpFS)植株中, cyFBPase 和 SBPase酶活分别是野生型的1.77和1.45倍,在转cyFBPase单基因(TpF)和SBPase单基因 (TpS)植株中,cyFBPase 和 SBPase酶活分别是野生型的1.55和1.12倍,1.23和1.36倍。TpF, TpS 和 TpFS转基因植株的光合效率分别比野生型提高了4%,20%和25%。SBPase和cyFBPase在转基因烟草中相互正向调控,协同增效。 此外,三种转基因植株的蔗糖含量均高于WT植株。 淀粉含量在TpFS和TpS植株中分别提高了53%和37%,但在TpF植株中略有下降。 此外,含有SBPase和/或cyFBPase基因的转基因烟草植株生长加快,生物量提高。 在TpFS、TpS和TpF植株中,干重、株高、茎粗、叶大小、花数和果荚重均比WT植株大幅增高。 因此,共表达SBPase和cyFBPase可能为作物高产开辟新的途径。
本研究通过RNA-seq分析比较了甘蓝型油菜-白芥属间杂种后代的黄籽材料及其褐籽亲本间的基因表达差异,并与类黄酮和脂肪酸含量变化进行关联分析。通过HPLC-PDA-ESI(−)/MSn分析,我们发现黄籽中苯丙烷和类黄酮类物质(如异鼠李素、表儿茶素、山奈酚和其它衍生物)的含量显著低于褐籽材料。黄籽材料的脂肪酸含量较褐籽高,主要是由于C16:0、C18:0、C18:1、C18:2和C18:3的含量变化所导致。通过授粉后4周(4 WAF)和5周种子的RNA-seq分析,我们发现黄、褐籽间的差异表达基因(DEGs)主要富集于类黄酮和脂肪酸合成相关的路径,包括BnTT3、BnTT4、BnTT18和BnFAD2。此外,我们发现黄籽中脂肪酸合成、去饱和、延伸相关的基因(FAD3、LEC1、FUS3、LPAT2)较褐籽上调表达,而与β氧化相关的基因(AIM1和KAT2)在黄籽中下调表达。这些与类黄酮、苯丙烷、脂肪酸含量变化相关的DEGs将有助于解释黄籽甘蓝型油菜的表型变化,且对于油菜的遗传改良也具有一定的意义。
在自然条件下,植物经常遭受各种生物和非生物因素胁迫而影响其生长和发育,特别是限制作物的生产能力。在影响植物光合作用的各种非生物因素中,光是驱动植物碳代谢和维持地球生命的重要因素,而光环境中光强和光质的变化极大地影响植物的光合作用以及其形态,生理和生化参数,且不同植物对光强和光质的响应不同,与其生长的环境条件有关。目前,大量研究报道了光照强度是如何影响作物的生长和发育,而本综述归纳总结了光环境中不同光质成分和光强对作物的叶片形态和解剖结构,气孔发育,光合作用,色素组成,活性氧,抗氧化酶和激素动态等相关参数的影响,旨在为作物光合作用对光强和光质的响应机制研究提供理论支撑。
花生病害严重威胁花生生产,而通过种间杂交创制抗病材料是解决这一问题的有效途径。本研究利用花生栽培品种四粒红与野生种Arachis duranensis杂交,通过胚拯救和组织培养获得了种间杂种F1幼苗,细胞学和分子标记鉴定表明种间杂种F1为真杂种。进一步对扩繁F1幼苗进行秋水仙素处理,获得了F1种子,命名为Am1210。通过寡核苷酸荧光原位杂交鉴定、分子标记鉴定、表型鉴定和网斑病鉴定,我们发现:1)Am1210是Slh和ZW55种间杂交异源六倍体花生;2)蔓生、单粒或二粒荚果和红色种皮等性状相对于直立型、多粒荚果和褐色种皮为显性性状;3)Am1210的网斑病抗性与Slh相比显著提高,表明这种抗性来自于A. duranensis。此外,本研究还开发了69个显性和共显性分子标记,可用于种间杂种鉴定及未来A. duranensis染色体片段易位或渗入系的鉴定。
大豆花叶病毒(SMV)病是一种世界性病害,严重影响大豆(Glycine max(L.)Merr.)产量和品质。SC18是华南地区主要的大豆花叶病毒株系之一,但其抗性遗传机制尚不完全清楚。本研究利用中黄24(抗性)和华夏3号(感性)的杂交后代F1,F2和168个F11重组自交系(RILs)群体,利用高密度遗传图谱对抗病品种中黄24的SC18株系抗性基因进行精细定位,并分析其遗传机理。根据F2(3R:1S)和重组自交系(RILs)群体(1R:1S)的分离比例,单个显性基因调控中黄24对SC18的抗性。复合区间作图法(CIM)将抗性基因位点定位在第13号染色体上415.357 kb区域,LOD值为37.43,表型变异解释率达62.01%。根据定位区间内基因的功能注释,鉴定了三个可能与SC18抗性有关的候选基因,包括一个NBS-LRR型基因和两个丝氨酸/苏氨酸蛋白基因。与对照相比,这些基因在抗性材料中表达上调,其中NBS-LRR型基因在亲本外显子非同义SNV区域存在单碱基替换。这项研究为大豆分子抗病育种以及SC18抗性基因定位和功能验证提供参考。
本文构建了一种基于图像的半自动的大田作物根系表型分析方法,包括图像采集、图像去噪与分割、特征提取和数据分析四个模块,能够提取5个全局特征和40个局部特征。通过对比人类统计的一级侧根分支数和本文构建的方法提取的结果,发现二者之间具有较好的一致性,R2高达0.97。在玉米/大豆间作系统中,基于该方法提取的根系表型特征参数,进一步发现玉米的种间优势主要表现在5-7轮节根基部5cm内,而间作系统对大豆的明显抑制作用主要体现在主根基部20 cm范围内。因此,本文为大田根系形态和拓扑表型特征的研究提供了一种高通量和高精度的新方法,可以潜在的应用于大田根系三维结构的重建,以及根系生长、溶质运输和水分吸收的模型模拟(例如OpenSimRoot)。
本研究从历史数据以及公开文章中收集了57个与大豆种子可溶性糖含量相关的数量性状位点(QTLs)。通过meta、overview和共线性分析来细化QTL区间,共得到8个共有QTL。使用染色体片段代换系(CSSLs)群体对这些共有QTL进行验证,选择了两个包含共有QTL和有导入片段的品系:其中一个与共有QTL区间相关的一个品系可溶性糖含量较高,另一个品系可溶性糖含量较低。在种子发育的早期、中期和晚期对这两个品系进行转录组测序,分别鉴定出158个、109个和329个差异表达基因。通过重测序数据和共有QTL区间分析,在野生大豆遗传导入片段中鉴定出3个候选基因Glyma.19G146800、Glyma.19G122500和Glyma.19G128500。通过对两个CSSL亲本SN14和ZYD00006的序列比对,发现Glyma.19G122500编码序列发生单核苷酸多态性(SNP)突变,导致氨基酸序列发生非同义突变,影响了蛋白质结构。基于这一SNP,我们开发了竞争性等位基因特异性PCR (KASP)标记,并将其用于CSSL品系的鉴定。这些结果为进一步鉴定大豆可溶性糖相关基因及进一步育种奠定了基础。
本研究在前期已发掘短片段InDels和SNPs基础上,基于全基因组重测序分析在一个重组自交系群体的两个亲本中品03-5373(ZP)和中黄13(ZH)之间检测到不均匀分布在大豆20条染色体上的13573个长片段InDels,其中,Chr11上最少,有321个,Chr18上最多,有1246个。长片段InDels在染色体两臂的平均密度显著高于着丝粒区,与大豆基因组注释基因的分布模式一致。位于基因区的长片段InDels有2704个,占总数目的19.9%,其中319个为可导致蛋白质序列截短或延长的大效应InDels。重点对前期鉴定的株高相关QTL(qPH16)进行分析,共鉴定到35个长片段InDels,并将其开发成InDel标记,其中26个InDel标记(74.3%)在ZP和ZH之间表现出明显的多态性。利用开发的标记结合已有的4个SNPs标记对由ZP和ZH衍生的242个重组自交系进行基因型鉴定和QTL定位,将qPH16的定位区间从原来的960 kb缩小到477.55 kb,包含65个注释基因。在SNPs和短片段InDels开发基础上,进一步开发长片段InDels,可为大豆重要农艺性状的遗传分析和分子辅助选择育种提供更加全面的遗传变异信息。
为筛选大豆香味种质,建立大豆叶片中香味特征化合物2-乙酰基-1-吡咯啉(2-acetyl-l-Pyrroline,2AP)的鉴定方法。本研究通过单因素及三因素四水平(L9 (34)的正交试验,以峰形、总峰面积及检测样品时间为考察指标,建立了利用气质联用仪(GC-MS)快速检测香味的方法,明确了仪器运行最佳参数包括:柱温70℃,进样口温度180℃,以及样品最优萃取时间条件(酒精含量1ml、NaCl含量0.1g,超声时间10min,萃取时间为1h)。该检测方法重复性好、简单快速、样本试剂消耗少,可精准快速测定2AP含量。利用该方法对不同地理来源的101个大豆基因型进行了分析筛选。结果表明, 2-AP平均含量为0.29ppm,变幅为0.094ppm到1.816ppm,遗传多样性指数为0.54。可被划分为3个等级,其中,1级香型大豆有7份,包括中龙608、黑农88、哈13-2958、红面豆、黑农82、黄毛豆、吉育21。本研究建立的方法及筛选的优异种质为大豆香味育种和基因发掘提供了技术和材料支撑。
油菜(甘蓝型,Brassica napus L)是世界上最重要的油料作物。油菜在种子成熟后期快速地积累油脂。然而,在种子成熟后期,人们对油菜种子的油脂积累和种皮颜色变化机制却知之甚少。本研究中,我们分析了油菜种子发育后期即开花后25天至70天,种皮、糊粉层和子叶的超微结构特征。研究结果表明,子叶中的叶绿体退化成非光合作用的质体从而导致子叶由绿色转变为黄色。糊粉层中的叶绿体退化成没有包膜的质体残余物,而子叶细胞中的叶绿体则退化成具有完整内膜和外膜的前质体。从开花后40天到70天,在糊粉层和子叶细胞中,叶绿体退化成没有类囊体的质体,油体与质体或蛋白体直接接触互作,细胞内的内质网较少;同时,油菜种子中的叶绿素含量降低并伴随着油脂含量升高。这些结果说明,在油菜种子发育后期,油脂的快速合成不依赖叶绿体光合作用产生的NADPH(主要的还原力),可能是利用氧化磷酸戊糖途径等其他来源的还原力。质体、细胞质或油体中的甘油三酯合成相关的酶可能参与了子叶和糊粉层细胞中甘油三酯的合成。
在间作系统中,高位作物往往会对低位作物造成遮荫胁迫,从而影响低位作物的农艺特性。本研究探讨了遮荫胁迫下不同花生品种间光合、生理及产量变化的差异机制。在花生的生殖生长时期对4个花生品种S60、C4、P12和YS151进行77天的遮荫胁迫。结果表明,遮荫胁迫下,S60和P12的产量和干物重降低幅度均低于C4和YS151。遮荫胁迫下S60和P12的抗氧化酶活性高于C4和YS151。遮荫胁迫下,S60和P12的捕光能力高于C4和YS151,这与叶绿素a、b含量和叶绿素a/b比值的变化有关。遮荫胁迫下,C4和YS151的净光合速率、气孔导度和蒸腾速率降低,而胞间CO2浓度升高。非气孔限制因子降低了遮荫胁迫下花生的光合能力。遮光胁迫下,S60和P12的PSII (Fv/Fm)和非光化学猝灭(NPQ)的最大光化学效率均高于C4和YS151。以上结果表明,S60和P12在弱光环境中可以吸收更多的光能进行光合作用,并将多余的能量以热量的形式耗散,以提高其防光能力。本研究解释了造成遮荫胁迫下花生品种间抗逆性差异的机制,为耐荫品种的选择提供了生理参数。
本研究建立了叶柄长度检测方法,并对EMS诱变冀黄13获得的高光效新种质M657为材料,于2017-2018年度在北方、黄淮、南方共7个地点进行表型鉴定。与冀黄13相比,M657在北方春、黄淮海夏及南方夏种植时矮化、叶柄短表型稳定,M657株高与叶柄长度显著降低,有效分枝数增加,生育期延长2-7 d,单株粒重、百粒重下降;4个短叶柄新品系的选育为大豆株型改良提供了重要的亲本种质,同时证明了利用矮杆短叶柄新种质M657理想株型为耐密、高产大豆新品种的培育的可行性。
本研究利用自然群体(281份资源)和重组自交系群体(270份家系),在不同磷素处理条件下分别评价其T1(四叶期,苗期)和T2(六叶期,花期)两个需磷关键时期11个磷素利用相关性状。结果发现,200个SNPs与磷素利用相关性状显著关联,其中包括91个T1期SNPs和109个T2期SNPs;这些SNPs中,12号染色体关联SNP簇(s715611375、ss715611377、ss715611379、ss715611380)在低磷处理条件下与T1期的株高显著关联,其优势单倍型株高显著优于其它单倍型;10号染色体SNP簇(ss715606501、ss715606506、s715606543)在低磷处理下与T2期根冠比、根系干重和总干重显著关联,其优势单倍型相关性状亦显著优于其它单倍型。进一步分析发现,4个SNPs(ss715597964、ss715607012、ss715622173和ss715602331)在低磷条件下与T1和T2期相关性状共关联;同时发现,12个重组自交系群体连锁QTLs与关联位点一致。基于此,筛选出14个在低磷胁迫下差异表达候选基因,其中包括MYB转录因子、紫色酸性磷酸酶、糖转运蛋白和热激蛋白家族基因等。上述遗传位点与候选基因为大豆磷素利用效率遗传改良提供了选择标记及基因。
本文探讨了PEG诱导的渗透胁迫与荫蔽效应之间的关系。荫蔽和非荫蔽条件下,大豆品种C-103受到聚乙二醇(PEG-6000)诱导的渗透胁迫。在两种光环境中,PEG诱导的渗透胁迫都显著降低了相对含水量、形态参数、碳水化合物和叶绿素含量,大豆幼苗的渗透调节物质、活性氧和抗氧化酶明显增加。本研究表明,在非荫蔽条件下生长的大豆幼苗,PEG诱导的渗透胁迫比荫蔽下的幼苗产生更多的丙二醛和过氧化氢。同样,在干旱胁迫下,被遮荫的植株比不被荫蔽的植株积累了更多的糖和脯氨酸。因此,本研究结果揭示了未遮荫的植物比遮荫的植物对 PEG诱导的渗透胁迫更敏感,这提示荫蔽可以增强植物对渗透胁迫的保护机制,或者至少不会增强 PEG诱导的渗透胁迫对大豆幼苗的不利影响。
甘蓝型油菜是食用植物油和饲用蛋白的重要来源,然而种子中色素严重影响菜籽油的品质和饼粕的饲用价值。本研究以甘蓝型油菜黄籽母本GH06和黑籽父本中油821构建的重组自交系群体为研究对象,对不同环境下种子(种胚和种皮)色素组份进行QTL定位分析和候选基因的鉴定。结果共检测到94个影响种皮和种胚色素组份含量的QTL位点,44个在种胚中被检测到,50个在种皮中被检测到,分别位于甘蓝型油菜15条不同染色体上。其中包括28个花色素含量相关的QTL,单个QTL可解释2.41-44.46%的表型变异;24个类黄酮含量相关的QTL,单个QTL可解释2.41-20.26%的表型变异;16个总酚含量相关的QTL,单个QTL可解释2.74–23.68%的表型变异;26个黑色素含量相关的QTL,单个QTL可解释表型变异的2.37–24.82%,说明这些性状是由多基因控制的数量性状。同时,在A06,A09和C08染色体上存在多个QTL集中分布的现象,分别包含15个、19个和10个色素相关的QTL,且大多数QTL解释的表型变异>10%被认为是主效QTL。根据甘蓝型油菜“Darmor-bzh”参考基因组注释信息,在被重复检测到的QTL区间内筛选到67个候选基因,通过RNA-seq和qRT-PCR分析结果推断12个差异表达基因可能是参与种子色素合成相关的重要候选基因。本研究结果为甘蓝型油菜种子色素合成遗传机理提供了新的认识并为深入解析甘蓝型油菜粒色形成的分子机制奠定了基础。
叶片是植物的主要光合器官,对作物品种的产量起着重要作用。鉴定导致叶片表型变异的致病突变和候选基因是大豆籽粒增产的重要育种目标。以大豆品种中品661为背景,研究了EMS诱导的具有异常皱叶表型的大豆突变体DWARFCRINKLEDLEAF1 (DCL1)。为了研究与皱叶性状相关的基因组位点,我们从Zp661和DCL1的杂交中构建了F2分离群体。采用整体分离分析(bulk separation analysis, BSA)结合全基因组重测序方法,通过欧氏距离(Euclidean distance, ED)关联算法检测出12个总长度为20.32 Mb的候选基因组区域与目标性状连锁。测序结果显示,Glyma.19G207100基因第1外显子存在一个单核苷酸突变(C:G>T: A)。基于该SNP衍生的CAPS标记对候选基因进行了验证,结果表明亲本之间存在核苷酸多态性。因此,我们的研究结果表明Glyma.19G207100(命名为GLYCINE MAX DWARF CRINKLED LEAF 1, GmDCL1)是一个可能参与大豆突变体DCL1皱叶性状形态发生的候选基因。本研究为该基因的功能验证提供了基础,并为大豆增产育种提供了前景。
遗传改良的转基因大豆引入农田生态系统后转基因可能通过花粉介导从大豆漂移到当地的野生大豆,并可能通过提高某些环境下杂交种的适合度增加转基因大豆的杂草化风险,同时也威胁野生大豆的遗传多样性。虽然花粉介导的转基因作物和野生近缘种的基因漂移依赖于许多因素,但由遗传背景决定的亲和性是关键因素。不同种群野生大豆的遗传变异可能会导致其与转基因大豆的亲和性存在较大差异,因此评价转基因大豆与不同种群野生大豆的亲和性是评估转基因大豆与野生大豆基因漂移环境风险的必要环节。以转基因抗草甘膦大豆为父本,18个野生大豆种群为母本进行人工杂交,分析了杂交后的结荚率和每荚饱满种子粒数,计算出不同种群野生大豆自交及其与转基因大豆杂交200朵花后产生的饱满种子粒数(AFS),最后计算杂交亲和性指数(ICSC)(野生大豆与转基因大豆杂交200朵花产生的饱满种子数与野生大豆自交200朵花产生的饱满种子数之比)。结果表明,18个种群野生大豆自交和杂交后,结荚率分别介于96.50 - 99.50% 和4.92-18.03%,每荚饱满种子粒数分别介于1.70 - 2.69 和0.20 - 0.48之间。近89%的野生大豆种群与转基因大豆的亲和性为中等及以上(ICSC>1.0%)。这一结果显示转基因大豆的基因通过花粉向野生大豆漂移的可能性较高。
大豆是典型的短日照作物,对光周期的敏感性决定大豆品种的适宜种植区域。在光周期调控的大豆开花途径中,开花抑制因子E1起主导作用。E1La和E1Lb是E1的同源基因,功能与E1类似。本研究利用RNA干扰(RNAi)技术在大豆品种自贡冬豆中同时沉默了E1和E1La/b基因。结果显示,与受体品种自贡冬豆相比,RNAi株系开花期和成熟期大幅度提前,光周期敏感性明显下降。在RNAi超早熟株系中,开花抑制基因GmFT4的表达水平显著下降,而开花促进基因GmFT2a/GmFT5a的表达水平明显上升。生育期组鉴定结果显示,自贡冬豆的生育期组属于MG VIII,为极晚熟品种,而RNAi株系的生育期组为MG 000,属超早熟新种质,可在中国最北部(53.5°N)的漠河市北极村种植。本研究验证了E1和E1La/b对大豆开花期和成熟期的负调控作用,创制出超早熟大豆新材料,为显著钝化大豆品种的光周期敏感性,大幅度缩短生育期,实现南方大豆种质资源在北方大豆主产区的有效利用,拓宽高寒地区大豆的遗传基础提供了新的途径。
连阴雨天气导致田间湿度增大,诱发田间霉菌的生长繁殖,并侵染农作物导致田间霉变的发生。在大豆生长后期,因连阴雨天气导致的田间霉变严重影响大豆的产量和品质。为探究田间霉变诱导大豆品质劣变的机制,本研究利用人工降雨室模拟连阴雨天气,诱发大豆籽粒田间霉变,结合转录组学和多种代谢检测平台,解析田间霉变胁迫下大豆品质劣变的生化机理。研究结果表明,田间霉变影响大豆的外观品质,霉变大豆籽粒皱缩、变形,并出现霉斑。田间霉变使大豆籽粒中蛋白质、多糖等储藏性物质的含量降低,导致籽粒百粒重显著下降。转录组分析发现,田间霉变使大豆籽粒中氨基酸代谢、糖酵解、三羧酸循环、脂肪酸β氧化等初生代谢过程加强。代谢组分析结果也表明,霉变大豆籽粒中多种氨基酸、糖类物质、有机酸的含量显著增加,而脂肪酸的含量则显著下降。与此同时,大豆异黄酮作为一类重要的抗逆活性物质,其生物合成在转录水平和代谢水平均受到田间霉变的诱导。田间霉变诱发大豆籽粒的防御机制,通过分解和消耗储藏性物质为防御体系的构建提供能量和底物,但储藏性物质的消耗导致了大豆品质劣变。本研究为深入了解大豆籽粒田间霉变的机制提供了重要的理论基础,同时也为抗田间霉变大豆品种的筛选指明方向。
谷类/豆类间作已在世界范围内被广泛采用,以提高可持续农业系统中的作物生产力。在不同的间作组合中,谷子/花生间作可以适应大部分缺水地区。然而,关于谷子/花生间作与单作在不同施氮水平下的产量性状和氮素利用效率差异的研究较少。本研究旨在确定谷子/花生间作的产量优势、经济效益以及适宜的氮肥用量。采用三种种植模式(单作谷子、单作花生和谷子/花生间作)和四种施氮量(0、75、150和225 kg ha-1)进行了为期两年的大田试验。结果表明,间作系统的土地当量比(LER)和净效应(NE)在施氮量为150 kg ha-1时达到两年来的最高值(LER两年平均为1.04,NE分别为0.347 Mg ha-1)。谷子是间作系统中的优势作物(谷子与花生的种间相对竞争能力(Amp)>0,竞争比率(CRmp)>1),单作在施氮量为225 kg ha-1,间作为150 kg ha-1时谷子产量最高。不同种植模式的氮利用效率(NUE)两年均在施氮量为150 kg ha-1时达到最高。间作结合施氮150 kg ha-1时净收益最高,两年平均为2791 $ ha-1,效益成本比为1.56。因此,从经济和农业可持续发展的角度来看,150 kg N ha-1施氮量的谷子/花生间作似乎是替代谷子或花生单作的一个有推广价值的选择。
大豆株高是由主效或微效基因控制的重要农艺性状。在已报道的株高QTL中,绝大部分定位区间较大,限制了大豆株高分子调控机制的解析。增加遗传图谱的标记密度会显著地提高QTL定位的效率和准确性。本研究利用双亲中黄13和中品03-5373及其衍生的241个重组自交系(RILs)全基因组重测序数据,构建一个包含4011个重组bin标记、总遗传距离为3139.15 cM的高密度遗传图谱,相邻bin标记间的平均距离为0.78 cM。比较基因组分析表明,所构建的遗传图谱与大豆参考基因组具有较高的共线性。基于此图谱,在6个环境中共检测到9个株高QTL,包括3个新位点(qPH-b_11,qPH-b_17和qPH-b_18)。其中,两个环境稳定主效QTL qPH-b_13和qPH-b_19-1可解释10.56%~32.7%的表型变异。qPH-b_13和qPH-b_19-1被精细定位到440.12 kb和237.06 kb的基因组区间,分别包含54和28个注释基因。进一步的拟南芥同源基因功能和候选基因表达分析表明,基因Glyma.13G292600和Glyma.19G194100分别为qPH-b_13和qPH-b_19-1的候选功能基因。