Aguilar-Benitez D, Rubio J, Millan T, Gil J, Die J, Castro P. 2020. Genetic analysis reveals PDH1 as a candidate gene for control of pod dehiscence in chickpea. Molecular Breeding, 40, 1–12.
Asekova S, Kulkarni K P, Kim M, Kim J, Song J T, Shannon J G, Lee J. 2016. Novel quantitative trait loci for forage quality traits in a cross between PI 483463 and ‘Hutcheson’ in soybean. Crop Science, 56, 2600–2611.
Bailey M A, Mian M A R, Carter T E, Ashley D A, Boerma H R. 1997. Pod dehiscence of soybean: Identification of quantitative trait loci. Journal of Heredity, 88, 152–154.
Carter T E, Nelson R L, Sneller C H, Cui Z. 2004. Genetic diversity in soybean. Agronomy Monographs, 16, 303–416.
Cheng Y B, Ma Q B , Ren H L, Xia Q J , Song E L, Tan Z Y, Li S X, Zhang G Y, Nian H. 2017. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theoretical and Applied Genetics, 130, 1041–1051.
Christiansen L C, Dal D F, Ulvskov P, Borkhardt B. 2002. Examination of the dehiscence zone in soybean pods and isolation of a dehiscence-related endopolygalacturonase gene. Plant Cell and Environment, 25, 479–490.
Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics, 127, 659–675.
Doebley J F, Gaut B S, Smith B D. 2006. The molecular genetics of crop domestication. Cell, 127, 1309–1321.
Dong Y, Wang Y Z. 2015. Seed shattering: From models to crops. Frontiers in Plant Science, 6, 1–13.
Dong Y, Yang X, Liu J, Wang B H, Liu B L, Wang Y Z. 2014. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 5, 3352.
Eisenach C, Chen Z, Grefen C, Blatt M R. 2012. The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. The Plant Journal, 69, 241–251.
Fuller D Q. 2007. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Annals of Botany, 100, 903–924.
Funatsuki H, Hajika M, Hagihara S, Yamada T, Tanaka Y, Tsuji H, Ishimoto M, Fujino K. 2008. Confirmation of the location and the effects of a major QTL controlling pod dehiscence, qPDH1, in soybean. Breeding Science, 58, 63–69.
Funatsuki H, Hajika M, Yamada T, Suzuki M, Hagihara S, Tanaka Y, Fujita S, Ishimoto M, Fujino K. 2012. Mapping and use of QTLs controlling pod dehiscence in soybean. Breeding Science, 61, 554–558.
Funatsuki H, Ishimoto M, Tsuji H, Kawaguchi K, Hajika M, Fujino K. 2006. Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breeding, 125, 195–197.
Funatsuki H, Suzuki M, Hirose A, Inaba H, Yamada T, Hajika M, Komatsu K, Katayama T, Sayama T, Ishimoto M, Fujino K. 2014. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proceedings of the National Academy of Sciences the United States of America, 111, 17797–17802.
Gao M Q, Zhu H Y. 2013. Fine mapping of a major quantitative trait locus that regulates pod shattering in soybean. Molecular Breeding, 32, 485–491.
Gibbs B F, Zougman A, Masse R, Mulligan C. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37, 123–131.
Gong P T. 2012. QTL mapping and analysis of traits related to pod dehiscence in soybean. Legume Genomics and Genetics, 132, 2253–2272.
Han J N, Han D Z, Guo Y, Yan H R, Wei Z Y, Tian Y, Qiu L J. 2019. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theoretical and Applied Genetics, 132, 2253–2272.
He M, Lan M, Zhang B C, Zhou Y H, Wang Y Q, Zhu L, Yuan M, Fu Y. 2018. Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidopsis thaliana. Journal of Integrative Plant Biology, 60, 1051–1069.
Hu D Z, Kan G Z, Hu W, Li Y L, Hao D R, Li X, Yang H, Yang Z Y, He X H, Huang F, Yu D Y. 2019. Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-wide association analysis across multiple environments. Frontiers in Plant Science, 10, 1–14.
Huang J H, Ma Q B, Cai Z D, Xia Q J, Li S X, Jia J, Chu L, Lian T X, Nian H, Cheng Y B. 2020. Identification and mapping of stable QTLs for seed oil and protein content in soybean [Glycine max (L.) merr.]. Journal of Agricultural and Food Chemistry, 68, 6448–6460.
Ji H, Chu S, Jiang W Z, Cho Y, Hahn J, Eun M, Mccouch S R, Koh H. 2006. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics, 173, 995–1005.
Jiang B Z, Li M, Cheng Y B, Cai Z D, Ma Q B, Jiang Z, Ma R R, Xia Q J, Zhang G Y, Nian H. 2019. Genetic mapping of powdery mildew resistance genes in soybean by high-throughput genome-wide sequencing. Theoretical and Applied Genetics, 132, 1833–1845.
Kadkol G P, Macmillan R H, Burrow R P, Halloran G M. 1984. Evaluation of Brassica genotypes for resistance to shatter. I. development of a laboratory test. Euphytica, 33, 63–73.
Kang S T, Kim H K, Baek I Y, Chung M G, Han W Y, Shin D C, Lee S. 2005. Genetic analysis of pod dehiscence in soybean. The Korean Journal of Crop Science, 50, 281–285.
Kang S T, Kwak M, Kim H K, Choung M G, Han W Y, Baek I Y, Kim M Y, Van K, Lee S H. 2009. Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.]. Euphytica, 166, 15–24.
Kang X, Cai J J, Chen Y X, Yan Y C, Yang S T, He R Q, Wang D, Zhu Y L. 2020. Pod-shattering characteristics differences between two groups of soybeans are associated with specific changes in gene expression. Functional & Integrative Genomics, 20, 201–210.
Kim M Y, Van K, Kang Y J, Kim K H, Lee S H. 2012. Tracing soybean domestication history: From nucleotide to genome. Breeding Science, 61, 445–452.
Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. 2006. An SNP caused loss of seed shattering during rice domestication. Science, 312, 1392–1396.
Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárský V. 2015. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiology, 168, 120–134.
Lee J S, Kim K R, Ha B K, Kang S T. 2017. Identification of SNPs tightly linked to the QTL for pod shattering in soybean. Molecular Breeding, 37, 54.
Li C B, Zhou A L, Sang T. 2006. Rice domestication by reducing shattering. Science, 311, 1936–1939.
Li J H, Wen S Z, Fan C F, Zhang M H, Tian S, Kang W J, Zhao W X, Bi C, Wang Q Y, Lu S, Guo W L, Ni Z F, Xie C J, Sun Q X, You M S. 2020. Characterization of a major quantitative trait locus on the short arm of chromosome 4B for spike number per unit area in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 133, 2259–2269.
Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. 2007. QTL mapping of domestication-related traits in soybean (Glycine max). Annals of Botany, 100, 1027–1038.
Liu G, Jia L J, Lu L H, Qin D D, Zhang J P, Guan P F, Ni Z F, Yao Y Y, Sun Q X, Peng H R. 2014. Mapping QTLs of yield-related traits using RIL population derived from common wheat and tibetan semi-wild wheat. Theoretical and Applied Genetics, 127, 2415–2432.
Mauricio R. 2001. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nature Reviews Genetics, 2, 370–381.
Miranda C, Culp C, Škrabišová M, Joshi T, Belzile F, Grant D M, Bilyeu K. 2019. Molecular tools for detecting Pdh1 can improve soybean breeding efficiency by reducing yield losses due to pod shatter. Molecular Breeding, 39, 1–9.
Murgia M L, Attene G, Rodriguez M, Bitocchi E, Bellucci E, Fois D, Nanni L, Gioia T, Albani D, Papa R. 2017. A comprehensive phenotypic investigation of the “Pod-Shattering Syndrome” in common bean. Frontiers in Plant Science, 8, 251.
Ouellette L A, Reid R W, Blanchard S G, Brouwer C R. 2018. LinkageMapView-rendering high-resolution linkage and QTL maps. Bioinformatics (Oxford, England), 34, 306–307.
Rajani S, Sundaresan V. 2001. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Current Biology, 11, 1914–1922.
Sab S, Lokesha R, Mannur D M, Somasekhar, Jadhav K, Mallikarjuna B P, Laxuman C, Yeri S, Valluri V, Bajaj P, Chitikineni A, Vemula A, Rathore A, Varshney R K, Shankergoud I, Thudi M. 2020. Genome-wide SNP discovery and mapping QTLs for seed iron and zinc concentrations in chickpea (Cicer arietinum L.). Frontiers in Nutrition, 7, 1–9.
Sanjukta S, Rai A K. 2016. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science and Technology, 50, 1–10.
Seo J H, Kang B K, Dhungana S K, Oh J H, Choi M S, Park J H, Shin S O, Kim H S, Baek I Y, Sung J S, Jung C S, Kim K S, Jun T H. 2020. QTL mapping and candidate gene analysis for pod shattering tolerance in soybean (Glycine max). Plants, 9, 1163.
Severin A J, Woody J L, Bolon Y, Joseph B, Diers B W, Farmer A D, Muehlbauer G J, Nelson R T, Grant D, Specht J E, Graham M A, Cannon S B, May G D, Vance C P, Shoemaker R C. 2010. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biology, 10, 160.
Simons K, Fellers J P, Trick H N, Zhang Z, Tai Y, Gill B S, Faris J D. 2006. Molecular characterization of the major wheat domestication gene Q. Genetics, 172, 547–555.
Suanum W, Somta P, Kongjaimun A, Yimram T, Kaga A, Tomooka N, Takahashi Y, Srinives P. 2016. Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Molecular Breeding, 36, 1–11.
Suzuki M, Fujino K, Funatsuki H. 2009. A major soybean QTL, qPDH1, controls pod dehiscence without marked morphological change. Plant Production Science, 12, 217–223.
Suzuki M, Fujino K, Nakamoto Y, Ishimoto M, Funatsuki H. 2010. Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Molecular Breeding, 25, 407–418.
Tucker M, Sexton R, Campillo E, Lewis L. 1989. Bean abscission cellulase: Characterization of a cDNA clone and regulation of gene expression by ethylene and auxin. Plant Physiology, 88, 1257–1262.
Vittori V D, Gioia T, Rodriguez M, Bellucci E, Bitocchi E, Nanni L, Attene G, Rau D, Papa R. 2019. Convergent evolution of the seed shattering trait. Genes, 10, 1–16.
Wang R, Ripley V L, Rakow G. 2007. Pod shatter resistance evaluation in cultivars and breeding lines of Brassica napus, B. juncea and Sinapis alba. Plant Breeding, 126, 588–595.
Xu M Y, Liu Z X, Qin H T, Qi H D, Wang Z Y, Mao X R, Xin D W, Hu Z B, Wu X X, Jiang H W, Qi Z M, Chen Q S. 2018. Identification of novel soybean oil content-related genes using QTL-based collinearity analysis from the collective soybean genome. Journal of Integrative Agriculture, 17, 1727–1735.
Yamada T, Funatsuki H, Hagihara S, Fujita S, Tanaka Y, Tsuji H, Ishimoto M, Fujino K, Hajika M. 2009. A major QTL, qPDH1, is commonly involved in shattering resistance of soybean cultivars. Breeding Science, 59, 435–440.
Yang H Y, Wang W B, He Q Y, Xiang S H, Tian D, Zhao T J, Gai J Y. 2019. Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theoretical and Applied Genetics, 132, 2793–2807.
Yao Y J, You Q B, Duan G Z, Ren J J, Chu S S, Zhao J Q, Li X, Zhou X A, Jiao Y Q. 2020. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC Plant Biology, 20, 51–13.
Zeng Z B. 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America, 90, 10972–10976.
Zhang L X, Boahen S. 2010. Evaluation of critical shattering time of early-maturity soybeans under early soybean production system. Agriculture and Biology Journal of North America, 1, 440–447.
Zhang X X, Guan Z R, Li Z L, Liu P, Ma L L, Zhang Y C, Pan L, He S J, Zhang Y L, Li P, Ge F, Zou C Y, He Y C, Gao S B, Pan G T, Shen Y O. 2020. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theoretical and Applied Genetics, 133, 2881–2895.
Zhou Y, Lu D F, Li C Y, Luo J H, Zhu B F, Zhu J J, Shangguan Y Y, Wang Z X, Sang T, Zhou B. 2012. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION 1. The Plant Cell, 24, 1034–1048.
Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, et al. 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 4, 408–414.
Zhu Q, Escamilla D M, Wu X B, Song Q J, Li S, Rosso M L, Lord N, Xie F T, Zhang B. 2020. Identification and validation of major QTLs associated with low seed coat deficiency of natto soybean seeds (Glycine max L.). Theoretical and Applied Genetics, 133, 3165–3176.
Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk K J. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE, 3, e1994.
|