Abdurakhmonov I Y, Abdukarimov A. 2008. Application of association mapping to understanding the genetic diversity of plant germplasm resources. International Journal of Plant Genomics, 2008, doi: 10.1155/2008/574927.
Acquaah G. 2015. Conventional plant breeding principles and techniques. In: Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham, Switzerland. pp. 115–158.
Akond M, Liu S, Schoener L, Anderson J A, Kantartzi S, Meksem K, Song Q, Wang D, Wen Z, Lightfoot D, Kassem A. 2013. SNP-Based genetic linkage map of soybean using the SoySNP6K Illumina Infinium BeadChip genotyping array. Journal of Plant Genome Sciences, 1, 80–89.
Andersson M S, Vicente M C. 2010. Gene Flow Between Crops and their Wild Relatives. Johns Hopkins University Press, Baltimore, Maryland, the United States. pp. 402–403.
Ashraf M, Foolad M R. 2013. Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breeding, 132, 10–20.
Carpentieri-Pipolo V, Pipolo A E, Abdel-Haleem H, Boerma H R, Sinclair T R. 2012. Identification of QTLs associated with limited leaf hydraulic conductance in soybean. Euphytica, 186, 679–686.
Chen H T, Cui S Y, Fu S X, Gai J Y, Yu D Y. 2008. Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Australian Journal of Agricultural Research, 59, 1086–1091.
Churchill G A, Doerge R W. 1994. Empirical threshold values for quantitative trait mapping. Genetics, 138, 963–971.
Concibido V, Vallee B L, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J K, Wu K, Delannay X. 2003. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theoretical and Applied Genetics, 106, 575–582.
DeRose-Wilson L, Gaut B S. 2011. Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS ONE, 6, e22832.
Do T D, Vuong T D, Dunn D, Clubb M, Valliyodan B, Patil G, Chen P Y, Xu D, Nguyen H T, Shannon J G. 2019. Identification of new loci for salt tolerance in soybean by high-resolution genome-wide association mapping. BMC Genomics, 20, 318.
Feng X, Feng P, Yu H, Yu X, Sun Q, Liu S, Minh T N, Chen J, Wang D, Zhang Q, Cao L, Zhou C, Li Q, Xiao J, Zhong S, Wang A, Wang L, Pan H, Ding X. 2020. GsSnRK1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance. Plant Cell & Environment, 43, 1192–1211.
Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L. 2014. Salinity tolerance in soybean is modulated by natural variation in GmSALT3. The Plant Journal, 80, 937–950.
Hamwieh A, Xu D. 2008. Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breeding Science, 58, 355–359.
Hu D Z, Zhang H R, Du Q, Hu Z B, Yang Z Y, Li X, Wang J, Huang F, Yu D Y, Wang H, Kan G Z. 2020. Genetic dissection of yield-related traits via genome-wide association analysis across multiple environments in wild soybean (Glycine soja Sieb. and Zucc.). Planta, 251, doi: 10.1007/s00425-019-03329-6.
Hyten D L, Song Q J, Zhu Y L, Choi I Y, Nelson R L, Costa J M, Specht J E, Shoemaker R C, Cregan P B. 2006. Impacts of genetic bottlenecks on soybean genome diversity. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 103, 16666–16671.
Jia Q, Li M W, Zheng C, Xu Y, Sun S, Li Z, Wong F L, Song J, Lin W W, Li Q, Zhu Y, Liang K, Lin W, Lam H M. 2020. The soybean plasma membrane-localized cation/H(+)exchanger GmCHX20a plays a negative role under salt stress. Physiologia Plantarum, 171, 714–727.
Jin T, Sun Y, Shan Z, He J, Wang N, Gai J Y, Li Y. 2020. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. Plant Biotechnology Journal, 19, 1155–1169.
Jin T, Sun Y, Zhao R, Shan Z, Gai J Y, Li Y. 2019. Overexpression of peroxidase gene GsPRX9 confers salt tolerance in soybean. International Journal of Molecular Sciences, 20, doi: 10.3390/ijms20153745.
Kan G Z, Ning L H, Li Y K, Hu Z B, Zhang W, He X H, Yu D Y. 2016. Identification of novel loci for salt stress at the seed germination stage in soybean. Breeding Science, 66, 530–541.
Kan G Z, Zhang W, Yang W M, Ma D Y, Zhang D, Hao D R, Hu Z B, Yu D Y. 2015. Association mapping of soybean seed germination under salt stress. Molecular Genetics and Genomics, 290, 2147–2162.
Karikari B, Li S G, Bhat J A, Cao Y C, Kong J J, Yang J Y, Gai J Y, Zhao T J. 2019. Genome-wide detection of major and epistatic effect QTLs for seed protein and oil content in soybean under multiple environments using high-density bin map. International Journal of Molecular Sciences, 20, doi: 10.3390/ijms20040979.
King K E, Lauter N, Lin S F, Scott M P, Shoemaker R C. 2013. Evaluation and QTL mapping of phosphorus concentration in soybean seed. Euphytica, 189, 261–269.
Lee G A, Crawford G W, Liu L, Sasaki Y, Chen X. 2011. Archaeological soybean (Glycine max) in East Asia: Does size matter? PLoS ONE, 6, 26720.
Lee J D, Shannon J G, Vuong T D, Nguyen H T. 2009. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc). Accession PI483463. Journal of Heredity, 100, 798–801.
Li Y. 2008. Effect of salt stress on seed germination and seedling growth of three salinity plants. Pakistan Journal of Biological Sciences, 11, 1268–1272.
Liang H Z, Yu Y L, Yang H Q, Xu L J, Dong W, Du H, Cui W W, Zhang H Y. 2014. Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theoretical and Applied Genetics, 127, 2127–2137.
Lipka A E, Tian F, Wang Q S, Peiffer J, Li M, Bradbury P J, Gore M A, Buckler E S, Zhang Z. 2012. GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28, 2397–2399.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.
Long N V, Dolstra O, Malosetti M, Kilian B, Graner A, Visser R G F, van der Linden C G. 2013. Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 126, 2335–2351.
Merk H L, Yarnes S C, Deynze A V, Tong N, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M. 2012. Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. Journal of the American Society for Horticultural Science, 137, 427–437.
Van Ooijen J W. 2011. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genetics Research, 93, 343–349.
Pathan M S, Lee J D, Shannon J G, Nguyen H T. 2007. Recent advances in breeding for drought and salt stress tolerance in soybean. In: Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. pp. 739–773.
Phang T H, Shao G, Lam H M. 2008. Salt tolerance in soybean. Journal of Integrative Plant Biology, 50, 1196–1212.
Price A H. 2006. Believe it or not, QTLs are accurate! Trends in Plant Science, 11, 213–216.
Qi X P, Li M W, Xie M, Liu X, Ni M, Shao G, Song C, Kay-Yuen Yim A, Tao Y, Wong F L, Isobe S, Wong C F, Wong K S, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, et al. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 5, 1–11.
Qiu P, Zhang W, Liu C, Jiang H, Li C, Fan H, Zeng Q, Hu G, Cheng Q. 2011. QTL identification of salt tolerance in germination stage of soybean. Legume Genomics Genetics, 2, 20–27.
Sengupta D, Naik D, Reddy A R. 2015. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update. Journal of Plant Physiology, 179, 40–55.
Shen X J, Wang Y Y, Zhang Y X, Guo W, Jiao Y Q, Zhou X A. 2018. Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis. International Journal of Molecular Sciences, 19, doi: 10.3390/ijms19123958.
Soto-Cerda B J, Cloutier S. 2012. Association Mapping in Plant Genomes, Genetic Diversity in Plants. In: Caliskan M, ed., InTech. [2020-12-22]. Available from: http://www.intechopen.com/books/genetic-diversity-in-plants/association-mapping-in-plant-genomes
Sun G Y, He Y, Zhang R H, Zhang D P. 1996. Studies on growth and activities of soybean root. Soybean Science, 15, 317–321. (in Chinese)
Tanksley S D, McCouch S R. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277, 1063–1066.
Tuyen D D, Lal S K, Xu D H. 2010. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theoretical and Applied Genetics, 121, 229–236.
Tuyen D D, Zhang H M, Xu D H. 2013. Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Molecular Breeding, 31, 79–86.
Wang N, Zhao S Z, Lv M H, Xiang F N, Li S. 2016. Research progress on identification of QTLs and functional genes involved in salt tolerance in soybean. Hereditas, 38, 992–1003.
Wang Z, Wang J, Bao Y, Wu Y, Zhang H. 2011. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 178, 297–307.
Wani S H, Sah S K, Hossain M A, Kumar V, Balachandran S M. 2016. Transgenic approaches for abiotic stress tolerance in crop plants. In: Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham, Switzerland. pp. 345–396.
Xia J, Ren J, Zhang S, Wang Y, Fang Y. 2019. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma, 349, 25–35.
Yamaguchi T, Blumwald E. 2005. Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 10, 615–620.
Yang J, Zaitlen N A, Goddard M E, Visscher P M, Price A L. 2014. Advantages and pitfalls in the application of mixed-model association methods. Nature Genetics, 46, 100–106.
Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A. 2017. Genome-wide association study. GWAS of salt tolerance in worldwide soybean germplasm lines. Molecular Breeding, 37, 1–14.
Zhang K, Tang J, Wang Y, Kang H, Zeng J. 2020. The tolerance to saline-alkaline stress was dependent on the roots in wheat. Physiology and Molecular Biology of Plants, 26, 947–954.
Zhang W, Liao X L, Cui Y M, Ma W Y, Zhang X N, Du H Y, Ma Y J, Ning L H, Wang H, Huang F, Yang H, Kan G Z, Yu D Y. 2019. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genetics, 15, e1007798.
Zhang W J, Niu Y, Bu S H, Li M, Feng J Y, Zhang J, Yang S X, Odinga M M, Wei S P, Liu X F, Zhang Y M. 2014. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS ONE, 9, e84750.
Zhang Z, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J, Arnett D K, Ordovas J M, Buckler E S. 2010. Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 42, 355–360.
Zhifang G, Loescher W H. 2003. Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant, Cell & Environment, 26, 275–283.
Zhuang B C. 1999. Researches on wild soybean (Glycine soja) in China for twenty years. Journal of Jilin Agricultural Sciences, 24, 3–10. (in Chinese)
|