Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (20): 4259-4271.doi: 10.3864/j.issn.0578-1752.2025.20.017

• ECOLOGICAL UTILIZATION OF SALINE-ALKALI LAND • Previous Articles     Next Articles

Effects of Ridge Tillage and Sowing in Furrow on Soil Water and Salt Dynamics and Maize Growth in Coastal Saline-Alkali Land

CHEN Jian1(), WU LiuGe1, ZHANG Xin1, DENG AiXing1, SONG ZhenWei1, ZHANG WeiJian1, ZHENG ChengYan1,2()   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
  • Received:2025-07-22 Accepted:2025-10-04 Online:2025-10-16 Published:2025-10-14
  • Contact: ZHENG ChengYan

Abstract:

【Objective】Studying the effects of different planting patterns on soil water-salt dynamics and maize yield could provide a theoretical basis for further enhancing the productivity of coastal saline-alkali lands. 【Method】 The experiment was conducted from 2022 to 2023 in the coastal saline-alkali soil of Dongying City, Shandong Province, using a split-plot design with two factors. The main plots consisted of two maize varieties: Zhongshi 8626 (V1) and Zhongdan 8922 (V2), while the subplots included three planting patterns: flat tillage (P1), ridge tillage and sowing on the ridge (P2), and ridge tillage and sowing in the furrow (P3). The study investigated the mechanisms by which ridge tillage and sowing in the furrow affects soil water-salt dynamics and maize yield. 【Result】 Compared with P1, P3 treatment increased soil water content in the 0-40 cm layer by 4.6% and reduced soil salt content by 10.3%, whereas P2 decreased water content by 4.8% and increased soil salt content by 11.8% during the maize seedling stage. The seedling emergence rate under P3 was 2.9% higher than that under P1. Ridge tillage and sowing in the furrow significantly improved topsoil water retention and reduced salinity, thereby enhancing maize emergence. At the silking stage, P3 increased root dry weight, root length, root surface area, and root volume by 18.5%, 21.1%, 23.1%, and 26.8%, respectively, compared with P1. At maturity stage, P3 increased dry matter accumulation, ear number, and kernels per spike by 10.2%, 3.1%, and 4.0%, respectively, compared with P1. The emergence rate of maize in V1 was 5.2% higher than that in V2. Compared with V1, V2 increased root dry weight, root length, root surface area, and root volume at the silking stage by 26.9%, 13.8%, 7.1%, and 26.0%, respectively. At maturity stage, V2 increased dry matter accumulation and 100-grain weight by 7.0% and 3.8%, respectively, compared with P1. However, V1 had 5.2% more ear numbers and 12.4% more kernels per spike than V2. In comparison with P1 and P2, P3 increased yield of V1 by 9.1% and 27.1%, respectively, while P3 increased yield of V2 by 10.7% and 19.0%, respectively. 【Conclusion】 Under the experimental conditions, the maize variety Zhongshi 8626 was selected and planted with ridge tillage and sowing in the furrow. This approach optimized soil water-salt dynamics, which contributed to higher seedling emergence rates, increased kernels per spike, enhanced harvest index, and improved grain yield.

Key words: saline-alkali land, planting, maize, water and salt dynamics, yield

Fig. 1

Planting patterns diagram"

Fig. 2

Soil water content changes of different planting patterns V1, V2, P1, P2 and P3 represent Zhongshi 8626, Zhongdan 8922, flat tillage, ridge tillage and sowing in ridge; and ridge tillage and sowing in furrow, respectively. The error line represents standard error (n=3). The same as below"

Fig. 3

Soil salt content changes of different planting patterns"

Fig. 4

Effects of different planting patterns on emergence rate of maize in 2022 (A) and 2023 (B)"

Fig. 5

Effects of different planting patterns on dry root weight and root morphology of maize at silking stage"

Table 1

Effects of different planting patterns on the leaf area index of maize"

年份
Year
品种
Variety
种植方式
Planting pattern
拔节期
V6
吐丝期
R1
灌浆期
R3
成熟期
R6
2022 V1 P1 0.70±0.01c 4.15±0.06c 3.79±0.02d 2.26±0.07c
P2 0.62±0.01d 4.03±0.03c 3.64±0.08d 2.11±0.06d
P3 0.75±0.03c 4.34±0.09b 3.96±0.04c 2.39±0.04c
V2 P1 0.88±0.03ab 4.52±0.06ab 4.26±0.03ab 2.80±0.04b
P2 0.84±0.02b 4.43±0.05b 4.18±0.07b 2.65±0.11b
P3 0.94±0.03a 4.63±0.06a 4.39±0.03a 3.03±0.09a
V * * * **
P ** ** ** **
V×P ns ns ns ns
2023 V1 P1 0.69±0.01b 4.60±0.07d 4.23±0.05d 2.12±0.06de
P2 0.59±0.03c 4.35±0.04e 4.06±0.08d 2.06±0.04e
P3 0.74±0.06b 5.19±0.01b 4.79±0.10bc 2.40±0.07c
V2 P1 0.84±0.02a 5.05±0.04b 4.94±0.09b 2.44±0.06b
P2 0.85±0.02a 4.84±0.05c 4.63±0.04c 2.27±0.07cd
P3 0.93±0.03a 5.42±0.11a 5.19±0.07a 2.81±0.09a
V * * * *
P * ** ** **
V×P ns ns * ns

Table 2

Effects of different planting patterns on dry matter accumulation of maize"

年份
Year
品种
Variety
种植方式
Planting pattern
干物质积累量 Dry matter accumulation (×103 kg·hm-2)
拔节期 V6 吐丝期 R1 灌浆期 R3 成熟期 R6
2022 V1 P1 2.48±0.16a 9.52±0.36cd 14.18±0.63bc 18.03±0.48c
P2 1.97±0.12b 8.90±0.36d 13.81±0.58c 16.21±0.28d
P3 2.50±0.05a 10.89±0.51abc 16.06±0.6ab 19.72±0.29ab
V2 P1 2.41±0.01a 11.79±0.84ab 15.01±0.79abc 19.94±0.11a
P2 2.39±0.22a 10.32±0.35bcd 14.23±0.67bc 18.60±0.43c
P3 2.60±0.12a 12.60±0.76a 16.63±0.51a 20.82±0.50a
V ns * ns *
P ns * * **
V×P ns ns ns ns
2023 V1 P1 2.19±0.08b 11.70±0.10bc 15.06±0.3cd 20.67±0.66c
P2 2.18±0.00b 10.50±0.11c 14.20±0.31d 18.66±0.36d
P3 2.55±0.10ab 12.21±0.40b 17.50±0.40ab 22.44±0.38ab
V2 P1 2.39±0.08ab 11.43±0.23bc 16.37±0.87bc 20.06±0.45cd
P2 2.36±0.13ab 11.70±0.87bc 17.34±0.22ab 21.05±0.51bc
P3 2.74±0.22a 13.59±0.20a 18.49±0.33a 23.15±0.19a
V ns ns * *
P * ** ** **
V×P ns ns ns ns

Table 3

Effects of different planting patterns on yield and yield components of maize"

年份
Year
品种
Variety
种植方式
Planting
pattern
产量
Yield
(kg·hm-2)
有效穗数
Ear number
(×104·hm-2)
穗粒数
Kernels
per spike
百粒重
100-grain
weight (g)
收获指数
Harvest index
(%)
2022 V1 P1 8523.84±314.58a 6.07±0.22ab 477.2±10.74b 30.54±0.54ab 47.44±1.70a
P2 7443.65±402.31b 5.72±0.11bc 469.3±0.66b 29.14±0.35b 45.95±1.48a
P3 9433.15±276.45a 6.20±0.06a 506.9±17.32a 30.50±0.89ab 47.87±1.07a
V2 P1 7105.27±175.39b 5.43±0.12c 417.1±5.39cd 31.14±0.69a 35.63±0.54b
P2 6883.08±99.91b 5.38±0.13c 396.2±11.76d 31.98±0.53a 37.08±0.83b
P3 7549.12±194.23b 5.76±0.05bc 429.7±7.18c 32.39±0.41a 36.32±0.88b
V * * * * *
P ** * * ns ns
V×P * ns ns ns ns
2023 V1 P1 9090.65±98.66b 6.78±0.02a 469.1±7.82a 31.75±0.86cd 44.07±0.67a
P2 7680.50±110.33c 6.63±0.02b 438.3±7.7b 30.73±0.52d 41.18±0.45a
P3 9786.60±162.08a 6.85±0.02a 481.8±4.12a 31.89±0.67cd 43.66±0.81ab
V2 P1 7972.48±40.01c 6.58±0.01bc 434.1±3.87b 33.98±0.25ab 37.92±0.58ab
P2 7140.36±234.00d 6.52±0.06c 422.0±7.07b 33.01±0.49bc 35.72±1.18b
P3 9138.38±74.56b 6.78±0.02a 441.1±5.79b 34.90±0.16a 39.48±0.31b
V * * * * *
P ** ** ** ns ns
V×P ns ns ns ns ns
[1]
杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45(5): 837-845.
YANG J S. Development and prospect of the research on salt-affected soils in China. Acta Pedologica Sinica, 2008, 45(5): 837-845. (in Chinese)
[2]
LEI S H, JIA X X, ZHAO C L, SHAO M G. A review of saline-alkali soil improvements in China: Efforts and their impacts on soil properties. Agricultural Water Management, 2025, 317: 109617.
[3]
孙佳, 夏江宝, 苏丽, 赵西梅, 陈印平, 岳喜元, 李传荣. 黄河三角洲盐碱地不同植被模式的土壤改良效应. 应用生态学报, 2020, 31(4): 1323-1332.

doi: 10.13287/j.1001-9332.202004.032
SUN J, XIA J B, SU L, ZHAO X M, CHEN Y P, YUE X Y, LI C R. Soil amelioration of different vegetation types in saline-alkali land of the Yellow River Delta, China. Chinese Journal of Applied Ecology, 2020, 31(4): 1323-1332. (in Chinese)
[4]
赵耕毛, 杨梦圆, 陈硕, 苏纪康, 吕慧琳, 贾慧昕, 刘兆普. 我国盐碱地治理: 现状、问题与展望. 南京农业大学学报, 2025, 48(1): 14-26.
ZHAO G M, YANG M Y, CHEN S, SU J K, H L, JIA H X, LIU Z P. Saline-alkali land management in China: Current situation, problems and prospects. Journal of Nanjing Agricultural University, 2025, 48(1): 14-26. (in Chinese)
[5]
YAO R J, GAO Q C, LIU Y X, LI H Q, YANG J S, BAI Y C, ZHU H, WANG X P, XIE W P, ZHANG X. Deep vertical rotary tillage mitigates salinization hazards and shifts microbial community structure in salt-affected anthropogenic-alluvial soil. Soil and Tillage Research, 2023, 227: 105627.
[6]
SONG J S, ZHANG H Y, CHANG F D, YU R, WANG J, CHEN A P, XU Y, LIU Y, ZHOU J, LI Y Y. Subsurface organic amendment of a saline soil increases ecosystem multifunctionality and sunflower yield. Science of the Total Environment, 2024, 917: 170276.
[7]
王国丽, 常芳弟, 张宏媛, 卢闯, 宋佳珅, 王婧, 逄焕成, 李玉义. 不同厚度秸秆隔层对河套灌区盐碱土壤温度、水分和食葵产量的影响. 中国农业科学, 2021, 54(19): 4155-4168. doi: 10.3864/j.issn.0578-1752.2021.19.011.
WANG G L, CHANG F D, ZHANG H Y, LU C, SONG J S, WANG J, PANG H C, LI Y Y. Effects of straw interlayer with different thickness on saline-alkali soil temperature, water content, and sunflower yield in Hetao irrigation area. Scientia Agricultura Sinica, 2021, 54(19): 4155-4168. doi: 10.3864/j.issn.0578-1752.2021.19.011. (in Chinese)
[8]
CONG P, SONG J S, DONG J X, SU W Y, FENG W H, ZHANG H Y. Straw return was more beneficial to improving saline soil quality and crop productivity than biochar in the short term. Frontiers in Plant Science, 2024, 15: 1517917.
[9]
LI W D, WANG H J, ZHONG M T, SONG J H, SHI X Y, TIAN T, WANG J G, ZHU Y Q, JIANG M H. Effects of straw return and biochar application on soil nutrients and osmotic regulation in cotton under different soil salinity levels. Applied Ecology and Environmental Research, 2023, 21(2): 957-974.
[10]
梁玉刚, 胡文彬, 刘烨, 李咏谊, 方宝华. 中国垄作栽培模式的研究进展. 生态学杂志, 2022, 41(7): 1414-1422.
LIANG Y G, HU W B, LIU Y, LI Y Y, FANG B H. The research progress of ridge cultivation mode in China. Chinese Journal of Ecology, 2022, 41(7): 1414-1422. (in Chinese)

doi: DOI: 10.13292/j.1000-4890.202207.024
[11]
刘佩, 刘小利, 王金金, 蔡铁, 张鹏, 任小龙, 贾志宽, 陈小莉. 集雨种植模式对小麦-玉米周年农田土壤水分及作物产量的影响. 灌溉排水学报, 2019, 38(6): 37-43.
LIU P, LIU X L, WANG J J, CAI T, ZHANG P, REN X L, JIA Z K, CHEN X L. Soil moisture dynamic and crop production of a rainfed wheat-summer maize rotation system. Journal of Irrigation and Drainage, 2019, 38(6): 37-43. (in Chinese)
[12]
邓欢, 戴飞, 史瑞杰, 王锋, 宋学锋, 赵武云. 基于HYDRUS-2D/3D的玉米全膜双垄沟水肥运移规律与根系响应. 农业机械学报, 2022, 53(S2): 100-108.
DENG H, DAI F, SHI R J, WANG F, SONG X F, ZHAO W Y. Water and fertilizer transport law and root response of maize in full-film double ridges and furrows based on HYDRUS-2D/3D. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S2): 100-108. (in Chinese)
[13]
ZHANG G X, DAI R C, MA W Z, FAN H Z, MENG W H, HAN J, LIAO Y C. Optimizing the ridge-furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China. Agricultural Water Management, 2022, 262: 107430.
[14]
韩同超. 汉代华北的耕作与环境: 关于三杨庄遗址内农田垄作的探讨. 中国历史地理论丛, 2010, 25(1): 40-49.
HAN T C. The relationship between cultivation and environment of North China during Han period: Research on ridge culture in Sanyangzhuang Village site. Journal of Chinese Historical Geography, 2010, 25(1): 40-49. (in Chinese)
[15]
DEVKOTA M, MARTIUS C, GUPTA R K, DEVKOTA K P, MCDONALD A J, LAMERS J P A. Managing soil salinity with permanent bed planting in irrigated production systems in Central Asia. Agriculture, Ecosystems & Environment, 2015, 202: 90-97.
[16]
BAKKER D M, HAMILTON G J, HETHERINGTON R, SPANN C. Productivity of waterlogged and salt-affected land in a Mediterranean climate using bed-furrow systems. Field Crops Research, 2010, 117(1): 24-37.
[17]
ZHANG Y J, XU S Z, LIU G Y, LIAN T X, LI Z H, LIANG T T, ZHANG D M, CUI Z P, ZHAN L J, SUN L, et al. Ridge intertillage alters rhizosphere bacterial communities and plant physiology to reduce yield loss of waterlogged cotton. Field Crops Research, 2023, 293: 108849.
[18]
REN B Z, DONG S T, LIU P, ZHAO B, ZHANG J W. Ridge tillage improves plant growth and grain yield of waterlogged summer maize. Agricultural Water Management, 2016, 177: 392-399.
[19]
张登奎, 王琦, 周旭姣, 王小赟, 赵晓乐, 赵武成, 雷俊. 生物炭覆盖垄沟集雨种植对集雨垄径流、土壤水热和红豆草产量的影响. 中国生态农业学报(中英文), 2020, 28(2): 272-285.
ZHANG D K, WANG Q, ZHOU X J, WANG X Y, ZHAO X L, ZHAO W C, LEI J. Effects of ridge-furrow rainwater harvesting with biochar-soil crust mulching on ridge runoff, soil hydrothermal properties, and sainfoin yield. Chinese Journal of Eco-Agriculture, 2020, 28(2): 272-285. (in Chinese)
[20]
谢军, 尹学伟, 魏灵, 王子芳, 李清虎, 张晓春, 鲁远源, 王秋月, 高明. 垄作直播控制灌溉对水稻产量和温室气体排放的影响. 中国农业科学, 2023, 56(4): 697-710. doi: 10.3864/j.issn.0578-1752.2023.04.009.
XIE J, YIN X W, WEI L, WANG Z F, LI Q H, ZHANG X C, LU Y Y, WANG Q Y, GAO M. Effects of control irrigation on grain yield and greenhouse gas emissions in ridge cultivation direct-seeding paddy field. Scientia Agricultura Sinica, 2023, 56(4): 697-710. doi: 10.3864/j.issn.0578-1752.2023.04.009. (in Chinese)
[21]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[22]
FANG X, LIU Z, LI J, LAI J B, GONG H R, SUN Z G, OUYANG Z, DOU W J, FA K Y. Non-synergistic changes in migration processes between soil salt and water in the salt patch of the coastal saline soil. Agronomy, 2023, 13(9): 2403.
[23]
高英波, 陶洪斌, 朱金城, 黄收兵, 徐彩龙, 盛耀辉, 王璞. 麦茬高度对机播夏玉米苗期生长及水分利用的影响. 中国农业科学, 2015, 48(19): 3803-3810. doi: 10.3864/j.issn.0578-1752.2015.19.003.
GAO Y B, TAO H B, ZHU J C, HUANG S B, XU C L, SHENG Y H, WANG P. Effects of wheat stubble height on growth and water use efficiency of mechanized sowing summer maize. Scientia Agricultura Sinica, 2015, 48(19): 3803-3810. doi: 10.3864/j.issn.0578-1752.2015.19.003. (in Chinese)
[24]
任昊, 程乙, 刘鹏, 董树亭, 赵杰, 张吉旺, 赵斌. 不同栽培模式对夏玉米根系性能及产量和氮素利用的影响. 中国农业科学, 2017, 50(12): 2270-2281. doi: 10.3864/j.issn.0578-1752.2017.12.008.
REN H, CHENG Y, LIU P, DONG S T, ZHAO J, ZHANG J W, ZHAO B. Effects of different cultivation patterns on root characteristics, yield formation and nitrogen utilization of summer maize. Scientia Agricultura Sinica, 2017, 50(12): 2270-2281. doi: 10.3864/j.issn.0578-1752.2017.12.008. (in Chinese)
[25]
吴希, 王家瑞, 郝淼艺, 张宏军, 张仁和. 种植密度对不同生育期玉米品种光温资源利用率和产量的影响. 作物学报, 2023, 49(4): 1065-1078.

doi: 10.3724/SP.J.1006.2023.23032
WU X, WANG J R, HAO M Y, ZHANG H J, ZHANG R H. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages. Acta Agronomica Sinica, 2023, 49(4): 1065-1078. (in Chinese)

doi: 10.3724/SP.J.1006.2023.23032
[26]
HASSANI A, AZAPAGIC A, SHOKRI N. Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 2021, 12(1): 6663.

doi: 10.1038/s41467-021-26907-3 pmid: 34795219
[27]
KE Z M, LIU X L, MA L H, JIAO F, WANG Z L. Spatial distribution of soil water and salt in a slightly salinized farmland. Sustainability, 2023, 15(8): 6872.
[28]
王琳琳, 李素艳, 孙向阳, 张涛, 付颖, 张红蕾. 不同隔盐措施对滨海盐碱地土壤水盐运移及刺槐光合特性的影响. 生态学报, 2015, 35(5): 1388-1398.
WANG L L, LI S Y, SUN X Y, ZHANG T, FU Y, ZHANG H L. Application of salt-isolation materials to a coastal region: Effects on soil water and salt movement and photosynthetic characteristics of Robinia pseudoacacia. Acta Ecologica Sinica, 2015, 35(5): 1388-1398. (in Chinese)
[29]
ZHANG G X, MO F, SHAH F, MENG W H, LIAO Y C, HAN J. Ridge-furrow configuration significantly improves soil water availability, crop water use efficiency, and grain yield in dryland agroecosystems of the Loess Plateau. Agricultural Water Management, 2021, 245: 106657.
[30]
李玉玲, 张鹏, 张艳, 贾倩民, 刘东华, 董昭芸, 贾志宽, 韩清芳, 任小龙. 旱区集雨种植方式对土壤水分、温度的时空变化及春玉米产量的影响. 中国农业科学, 2016, 49(6): 1084-1096. doi: 10.3864/j.issn.0578-1752.2016.06.005.
LI Y L, ZHANG P, ZHANG Y, JIA Q M, LIU D H, DONG Z Y, JIA Z K, HAN Q F, REN X L. Effects of rainfall harvesting planting on temporal and spatial changing of soil water and temperature, and yield of spring maize (Zea mays L.) in semi-arid areas. Scientia Agricultura Sinica, 2016, 49(6): 1084-1096. doi: 10.3864/j.issn.0578-1752.2016.06.005. (in Chinese)
[31]
CHEN G Z, WU P, WANG J Y, ZHANG P, JIA Z K. Ridge-furrow rainfall harvesting system helps to improve stability, benefits and precipitation utilization efficiency of maize production in Loess Plateau region of China. Agricultural Water Management, 2022, 261: 107360.
[32]
关法春, 苗彦军, Tianfang Bernie Fang, 兰小中, 梁正伟. 起垄措施对重度盐碱化草地土壤水盐和植被状况的影响. 草地学报, 2010, 18(6): 763-767.

doi: 10.11733/j.issn.1007-0435.2010.06.003
GUAN F C, MIAO Y J, FANG T B, LAN X Z, LIANG Z W. Effects of ridging on soil and above-ground biomass in heavy alkali-saline grasslands of west Songnen Plain, China. Acta Agrestia Sinica, 2010, 18(6): 763-767. (in Chinese)
[33]
苏丽, 葛磊, 夏江宝, 孙佳, 赵西梅. 黄河三角洲滨海滩涂不同微地形改造的盐地碱蓬恢复效应评价. 农业工程学报, 2021, 37(10): 82-90.
SU L, GE L, XIA J B, SUN J, ZHAO X M. Evaluating Suaeda salsa restoration after micro-topography reconstruction in the coastal beach of the Yellow River Delta, China. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 82-90. (in Chinese)
[34]
张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系. 作物学报, 2023, 49(1): 188-199.

doi: 10.3724/SP.J.1006.2023.23004
ZHANG J, WANG H Z, REN H, YIN F W, WU H Y, ZHAO B, ZHANG J W, REN B Z, DAI A B, LIU P. Relationship between root architecture and root pulling force of summer maize. Acta Agronomica Sinica, 2023, 49(1): 188-199. (in Chinese)

doi: 10.3724/SP.J.1006.2023.23004
[35]
DEINLEIN U, STEPHAN A B, HORIE T, LUO W, XU G H, SCHROEDER J I. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19(6): 371-379.

doi: 10.1016/j.tplants.2014.02.001 pmid: 24630845
[36]
SONG J S, ZHANG H Y, KUMAR A, CHANG F D, YU R, ZHANG X Q, WANG J, WANG W N, LIU J M, ZHOU J, LI Y Y. Combined organic ameliorants is benefits for improving ecosystem multi- functionality in saline soils. Industrial Crops and Products, 2025, 230: 121068.
[37]
张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响. 作物学报, 2024, 50(9): 2323-2334.

doi: 10.3724/SP.J.1006.2024.43002
ZHANG G Q, WANG H Z, GUO X S, ZHU F J, GAO H, ZHANG J W, ZHAO B, REN B Z, LIU P, REN H. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land. Acta Agronomica Sinica, 2024, 50(9): 2323-2334. (in Chinese)
[38]
白小龙, 武晋民, 张家豪, 王腾, 杨正虎, 田丰, 赵卉, 王彬. 不同改良物料及其配施组合对河套平原盐碱土壤玉米光合与根系形态特征的影响. 生态学杂志, 2024, 43(10): 3023-3030.
BAI X L, WU J M, ZHANG J H, WANG T, YANG Z H, TIAN F, ZHAO H, WANG B. Effects of different modified materials and their combinations on photosynthesis and root morphological characteristics of maize in saline-alkali soil of Hetao Plain. Chinese Journal of Ecology, 2024, 43(10): 3023-3030. (in Chinese)

doi: 10.13292/j.1000-4890.202410.015
[39]
杨明达, 关小康, 刘影, 崔静宇, 丁超明, 王静丽, 韩静丽, 王怀苹, 康海平, 王同朝. 滴灌模式和水分调控对夏玉米干物质和氮素积累与分配及水分利用的影响. 作物学报, 2019, 45(3): 443-459.

doi: 10.3724/SP.J.1006.2019.83026
YANG M D, GUAN X K, LIU Y, CUI J Y, DING C M, WANG J L, HAN J L, WANG H P, KANG H P, WANG T C. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize. Acta Agronomica Sinica, 2019, 45(3): 443-459. (in Chinese)
[40]
LI Y Y, MING B, FAN P P, LIU Y, WANG K R, HOU P, XUE J, LI S K, XIE R Z. Quantifying contributions of leaf area and longevity to leaf area duration under increased planting density and nitrogen input regimens during maize yield improvement. Field Crops Research, 2022, 283: 108551.
[41]
王本龙, 周春生, 李利荣, 胡佩雷, 海珍. 耕作方式与灌溉定额对苏打盐碱土理化性质和玉米生长的影响. 南京农业大学学报, 2025. https://kns.cnki.net/KCMS/detail/detail.aspxfilename=NJNY20250519002&dbname=CJFD&dbcode=CJFQ.
WANG B L, ZHOU C S, LI L R, HU P L, HAI Z. Effect of tillage practices and irrigation quotas on physico-chemical properties and maize growth in soda saline soils. Journal of Nanjing Agricultural University, 2025. https://kns.cnki.net/KCMS/detail/detail.aspxfilename=NJNY20250519002&dbname=CJFD&dbcode=CJFQ. (in Chinese)
[42]
韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响. 作物学报, 2024, 50(7): 1776-1786.

doi: 10.3724/SP.J.1006.2024.33069
HAN X C, ZHANG G Q, WANG Y H, REN H, WANG H Z, LIU G L, LIN D X, WANG Z Q, ZHANG J W, ZHAO B, REN B C, LIU P. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land. Acta Agronomica Sinica, 2024, 50(7): 1776-1786. (in Chinese)
[43]
邝雨欣, 张体彬, 程煜, 高伟强, 梁青, 童建康, 冯浩, 郁明军. 有机无机肥配施对盐渍化农田无机态氮迁移和玉米生长的影响. 干旱地区农业研究, 2025, 43(2): 105-115, 137.
KUANG Y X, ZHANG T B, CHENG Y, GAO W Q, LIANG Q, TONG J K, FENG H, YU M J. Effects of combined application of organic and inorganic fertilizers on inorganic nitrogen movement and maize growth in salinity soils. Agricultural Research in the Arid Areas, 2025, 43(2): 105-115, 137. (in Chinese)
[44]
寇江涛, 师尚礼, 蔡卓山. 垄沟集雨种植对旱作紫花苜蓿生长特性及品质的影响. 中国农业科学, 2010, 43(24): 5028-5036. doi: 10.3864/j.issn.0578-1752.2010.24.006.
KOU J T, SHI S L, CAI Z S. Effects of ridge and furrow rainfall harvesting on growth characteristics and quality of Medicago sativa in dryland. Scientia Agricultura Sinica, 2010, 43(24): 5028-5036. doi: 10.3864/j.issn.0578-1752.2010.24.006. (in Chinese)
[45]
周浩露, 申朝阳, 罗新宇, 黄英惠, 王可心, 王云浩, 高小丽. 氮肥对垄沟集雨种植谷子氮素利用效率及产量的影响. 中国农业科学, 2024, 57(5): 885-899. doi: 10.3864/j.issn.0578-1752.2024.05.005.
ZHOU H L, SHEN Z Y, LUO X Y, HUANG Y H, WANG K X, WANG Y H, GAO X L. The effect of nitrogen fertilizer on nitrogen use efficiency and yield of foxtail millet in ridge-furrow rainwater harvesting planting model. Scientia Agricultura Sinica, 2024, 57(5): 885-899. doi: 10.3864/j.issn.0578-1752.2024.05.005. (in Chinese)
[46]
ZHANG G X, ZHANG Y, LIU S J, ZHAO D H, WEN X X, HAN J, LIAO Y C. Optimizing nitrogen fertilizer application to improve nitrogen use efficiency and grain yield of rainfed spring maize under ridge-furrow plastic film mulching planting. Soil and Tillage Research, 2023, 229: 105680.
[47]
LIU G Z, YANG Y S, GUO X X, LIU W M, XIE R Z, MING B, XUE J, WANG K R, LI S K, HOU P. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg·ha-1. Resources, Conservation and Recycling, 2023, 188: 106656.
[48]
徐田军, 吕天放, 赵久然, 王荣焕, 蔡万涛, 刘月娥, 邢锦丰, 成广雷, 张春原, 张勇, 刘秀芝. 青贮玉米适收期淀粉、干物质含量和果穗鲜质量占比关系研究. 华北农学报, 2020, 35(S1): 167-175.

doi: 10.7668/hbnxb.20191264
XU T J, T F, ZHAO J R, WANG R H, CAI W T, LIU Y E, XING J F, CHENG G L, ZHANG C Y, ZHANG Y, LIU X Z. Study on the relationship between the content of starch and dry matter, the ratio of fresh weight of ear in silage maize. Acta Agriculturae Boreali-Sinica, 2020, 35(S1): 167-175. (in Chinese)

doi: 10.7668/hbnxb.20191264
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] YUE RunQing, LI WenLan, DING ZhaoHua, MENG ZhaoDong. Molecular Characteristics and Resistance Evaluation of Transgenic Maize LD05 with Stacked Insect and Herbicide Resistance Traits [J]. Scientia Agricultura Sinica, 2025, 58(7): 1269-1283.
[10] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[11] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[12] ZOU XiaoWei, XIA Lei, ZHU XiaoMin, SUN Hui, ZHOU Qi, QI Ji, ZHANG YaFeng, ZHENG Yan, JIANG ZhaoYuan. Analysis of Disease Resistance Induced by Ustilago maydis Strain with Overexpressed UM01240 Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2025, 58(6): 1116-1130.
[13] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[14] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[15] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!