Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (12): 2382-2396.doi: 10.3864/j.issn.0578-1752.2025.12.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Phosphorus Fractions in Rhizosphere and Bulk Soil of Wheat and Their Availability Under Long-Term Fertilization

LU Peng1(), FENG Jia1, LI Li1, YANG Li1, YANG Lei1(), LÜ DeZhi1, XUE YanFei2   

  1. 1 Shijiazhuang Institute of Pomology, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050061
    2 Inner Mongolia Autonomous Region Agricultural and Animal Husbandry Technology Extension Center, Hohhot 010013
  • Received:2024-08-23 Accepted:2024-12-10 Online:2025-06-19 Published:2025-06-19
  • Contact: YANG Lei

Abstract:

【Objective】 By studying the effects of long-term different fertilization on organic phosphorus and inorganic phosphorus in wheat rhizosphere and bulk soil, the contribution of organic phosphorus and inorganic phosphorus to soil available phosphorus was revealed, which could provide a theoretical basis for rational fertilization of soil and effective utilization of accumulated phosphorus in soil.【Method】Wheat rhizosphere and bulk soil samples were collected from different fertilization treatments (control without fertilizers (CK), nitrogen and potassium (NK), nitrogen, phosphorus and potassium (NPK), and NPK plus organic manure (MNPK)). The content of inorganic phosphorus fractions (dicalcium phosphate (Ca2-P), octa-calcium phosphate (Ca8-P), apatite (Ca10-P), aluminum bounded phosphate (Al-P), iron bounded phosphate (Fe-P), and occluded phosphate (O-P)) in the soil were determined by Chang and Jackson's inorganic phosphorus classification method improved by JIANG Bofan and GU Yichu, and organic phosphorus fractions (labile organic phosphorus (L-OP), moderately labile organic phosphorus (ML-OP), moderately resistant organic phosphorus (MR-OP), and high resistant organic phosphorus (HR-OP)) were determined by Bowman-Cole's organic phosphorus classification method.【Result】The long-term balanced fertilization (NPK, MNPK), especially the application of organic fertilizer (MNPK), significantly improved the level of soil organic carbon and decreased the soil pH, and significantly increased the content of L-OP, ML-OP and MR-OP in soil organic phosphorus and Ca2-P, Ca8-P, Al-P, Fe-P and O-P in inorganic phosphorus. Organic phosphorus mainly existed in ML-OP, followed by MR-OP, L-OP, and HR-OP, accounting for 73.4%, 15.6%, 5.4%, and 5.6% of the total organic phosphorus in rhizosphere soil, respectively, and 72.1%, 15.8%, 6.0% and 6.1% in bulk soil, respectively. The average content of inorganic phosphorus was Ca10-P>Ca8-P>Al-P>O-P>Fe-P>Ca2-P, accounting for 51.2%, 15.7%, 12.3%, 11.4%, 7.2%, and 2.2% of the total inorganic phosphorus in rhizosphere soil, respectively,and accounting for 53.2%, 15.4%, 11.6%, 10.9%, 6.7% and 2.2% of the total inorganic phosphorus in bulk soil, respectively. In the rhizosphere soil, the phosphorus fractions affecting the phosphorus activation coefficient (PAC) were ranked as ML-OP>Al-P>Ca2-P>L-OP>Ca8-P>MR-OP>Fe-P>O-P>Ca10-P>HR-OP. In bulk soil, the order of phosphorus fractions affecting PAC was Ca2-P>L-OP>Ca8-P>Al-P>ML-OP>Fe-P>MR-OP>Ca10-P>HR-OP>O-P.【Conclusion】Long-term balanced fertilization, especially the application of organic fertilizer, significantly improved the availability of moderately labile organic phosphorus and moderately labile inorganic phosphorus in rhizosphere soil. The availability of labile organic phosphorus and labile inorganic phosphorus in bulk soil was also significantly improved. Available phosphorus in the rhizosphere soil mainly came from ML-OP and Al-P, while available phosphorus in bulk soil mainly came from L-OP and Ca2-P. The reasonable soil fertilization could effectively improve soil phosphorus availability.

Key words: wheat, long-term fertilization, rhizosphere soil, bulk soil, fraction of inorganic phosphorus, fraction of organic phosphorus, phosphorus availability, tier soil

Table 1

Soil organic carbon and acidity of rhizosphere and bulk soils of the investigated Loess"

处理
Treatment
根际土壤 Rhizosphere soil 非根际土壤 Bulk soil
有机碳含量 SOC (g·kg-1) pH 有机碳含量 SOC (g·kg-1) pH
CK 8.83±0.10a 8.36±0.07a 7.90±0.35b 8.51±0.15a
NK 10.19±0.20a 8.20±0.02b 9.14±0.17b 8.39±0.11a
NPK 11.34±0.21a 8.14±0.04b 10.32±0.14b 8.29±0.03a
MNPK 16.96±0.64a 8.01±0.03b 15.13±0.41b 8.17±0.07a

Fig. 1

Organic phosphorus content in rhizosphere and bulk soil under difference treatment L-OP: Labile organic phosphorous, ML-OP: Moderately labile organic phosphorous, MR-OP: Moderately resistant organic phosphorous, HR-OP: High resistant organic phosphorous. Different capital letters on top of the bar represent significant difference of the phosphorus fraction in rhizosphere soils (or bulk soils) among treatments (P<0.05); Different lowercase letters represent the significant difference between the same phosphorus fraction in rhizosphere and bulk soil of the same treatment (P<0.05). *: P<0.05, **: P<0.01, n.s.: P>0.05. The same as below"

Fig. 2

Inorganic phosphorus content in rhizosphere and bulk soil under difference treatment"

Fig. 3

Content of total Po, total Pi and Olsen P and their ratios in rhizosphere and bulk soils under difference treatment"

Fig. 4

The correlation between the Olsen P and alkaline phosphatase activity (ALP) and different fractions of phosphorus in rhizosphere (a) and bulk (b) soil of wheat Numbers in the box represent the Pearson correlation between two variables, and the two variables are significantly correlated (P<0.05), no value in the box means that the correlation between the two variables is not significant (P>0.05)"

Table 2

Path analysis for alkaline phosphatase activity (ALP) as a function of different fractions of phosphorus in rhizosphere soil of wheat"

作用因子
Factor
直接作用
Direct effect
间接作用 Indirect effect
x1→y x2→y x3→y x4→y x5→y x6→y x7→y x8→y x9→y x10→y
L-OP (x1) 0.38 - 0.08 0.54 -0.05 -0.15 -0.05 0.00 1.11 -0.20 0.10
ML-OP (x2) 0.08 -0.37 - 0.54 -0.04 -0.14 -0.05 -0.01 1.06 -0.20 0.08
MR-OP (x3) 0.55 -0.37 0.08 - -0.04 -0.14 -0.05 -0.01 1.08 -0.20 0.08
HR-OP (x4) -0.13 -0.15 0.03 0.17 - -0.11 -0.03 0.00 0.59 -0.11 0.17
Ca2-P (x5) -0.16 -0.35 0.07 0.49 -0.08 - -0.05 -0.01 1.09 -0.20 0.13
Ca8-P (x6) -0.06 -0.36 0.07 0.50 -0.07 -0.15 - 0.00 1.11 -0.21 0.13
Ca10-P (x7) -0.22 0.06 -0.02 -0.19 0.01 0.04 0.01 - -0.20 0.02 0.00
Al-P (x8) 1.13 -0.37 0.08 0.52 -0.07 -0.16 -0.06 0.00 - -0.21 0.12
Fe-P (x9) -0.18 -0.37 0.08 0.51 -0.07 -0.15 -0.06 0.00 1.12 - 0.12
O-P (x10) -0.21 -0.20 0.04 0.24 -0.12 -0.12 -0.04 0.00 0.71 -0.14 -

Table 3

Path analysis for alkaline phosphatase activity (ALP) as a function of different fractions of phosphorus in bulk soil of wheat"

作用因子
Factor
直接作用
Direct effect
间接作用 Indirect effect
x1→y x2→y x3→y x4→y x5→y x6→y x7→y x8→y x9→y x10→y
L-OP(x1) 1.63 - 0.34 -1.35 0.01 0.63 0.22 0.00 -0.32 -0.20 0.01
ML-OP(x2) 0.35 1.59 - -1.33 0.01 0.62 0.20 0.00 -0.31 -0.19 0.01
MR-OP(x3) -1.36 1.61 0.34 - 0.01 0.63 0.21 0.00 -0.31 -0.19 0.01
HR-OP(x4) 0.03 0.66 0.15 -0.53 - 0.27 0.08 0.00 -0.11 -0.10 0.00
Ca2-P (x5) 0.66 1.55 0.33 -1.30 0.01 - 0.21 0.00 -0.31 -0.19 0.01
Ca8-P (x6) 0.23 1.55 0.31 -1.26 0.01 0.60 - 0.00 -0.31 -0.20 0.01
Ca10-P (x7) 0.00 1.05 0.19 -0.91 0.00 0.37 0.16 - -0.22 -0.12 0.01
Al-P (x8) -0.32 1.61 0.33 -1.32 0.01 0.62 0.22 0.00 - -0.20 0.01
Fe-P (x9) -0.21 1.58 0.32 -1.28 0.02 0.62 0.22 0.00 -0.31 - 0.01
O-P (x10) 0.02 1.19 0.22 -0.93 0.01 0.48 0.20 0.00 -0.26 -0.17 -

Fig. 5

Random Forest analysis to identify the main predictors of phosphorus activation coefficient (PAC) in rhizosphere (a) and bulk (b) soil of wheat"

[1]
刘双凤, 杨德志, 王凤, 徐晋玲. 施肥对我国农田土壤磷素形态影响的Meta分析. 中国土壤与肥料, 2024(8): 43-51.
LIU S F, YANG D Z, WANG F, XU J L. Meta-analysis of the effect of fertilizer application on phosphorus forms in agricultural soils in China. Soil and Fertilizer Sciences in China, 2024(8): 43-51. (in Chinese)
[2]
DEBICKA M, KOCOWICZ A, WEBER J, JAMROZ E. Organic matter effects on phosphorus sorption in sandy soils. Archives of Agronomy and Soil Science, 2016, 62(6): 840-855.
[3]
蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究. 中国农业科学, 1989, 22(3): 58-66.
JIANG B F, GU Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 1989, 22(3): 58-66. (in Chinese)
[4]
方兵, 陈林, 王阳, 祝亚飞, 王瑞, 宋桂芳, 刘俊, 杨斌, 张世文. 设施农业土壤磷素累积迁移转化及影响因素. 环境科学, 2023, 44(1): 452-462.
FANG B, CHEN L, WANG Y, ZHU Y F, WANG R, SONG G F, LIU J, YANG B, ZHANG S W. Accumulation, migration, and transformation of soil phosphorus in facility agriculture and its influencing factors. Environmental Science, 2023, 44(1): 452-462. (in Chinese)
[5]
李若楠, 王政培, BATBAYAR Javkhlan, 张东杰, 张树兰, 杨学云. 等有机质塿土有效磷和无机磷形态的关系. 中国农业科学, 2019, 52(21): 3852-3865. doi: 10.3864/j.issn.0578-1752.2019.21.014.
LI R N, WANG Z P, BATBAVAR JAVKHLAN, ZHANG D J, ZHANG S L, YANG X Y. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 052(021): 3852-3865. doi: 10.3864/j.issn.0578-1752.2019.21.014. (in Chinese)
[6]
沈仁芳, 蒋柏藩. 石灰性土壤无机磷的形态分布及其有效性. 土壤学报, 1992, 29(1): 80-86.
SHEN R F, JIANG B F. Distribution and availability of various forms of inorganic-P in calcareous soils. Acta Pedologica Sinica, 1992, 29(1): 80-86. (in Chinese)
[7]
刘静, 周俊, 李孝龙, 明月欣, 孙宏洋. 土壤有机磷形态与矿化速率分析方法研究进展. 土壤通报, 2023, 54(5): 1215-1225.
LIU J, ZHOU J, LI X L, MING Y X, SUN H Y. Advance in approaches of determining form and mineralization rate of soil organic phosphorus. Chinese Journal of Soil Science, 2023, 54(5): 1215-1225. (in Chinese)
[8]
刘丹, 游郭虹, 宋小艳, 胡雷, 柳杨, 王长庭. 施磷对川西北高寒草地土壤磷形态及有效性的影响. 生态学报, 2023, 43(6): 2378-2387.
LIU D, YOU G H, SONG X Y, HU L, LIU Y, WANG C T. Effects of phosphorus fertilization on soil phosphorus fractions and availability in an alpine grassland of northwestern Sichuan. Acta Ecologica Sinica, 2023, 43(6): 2378-2387. (in Chinese)
[9]
李黄维, 吴小红, 刘婷, 何金松, 王钧, 闫文德. 不同林分土壤磷形态与磷酸酶特征. 生态学报, 2023, 43(3): 1257-1266.
LI H W, WU X H, LIU T, HE J S, WANG J, YAN W D. Characteristics of soil phosphorus fractions and phosphatases activity in different plantations. Acta Ecologica Sinica, 2023, 43(3): 1257-1266. (in Chinese)
[10]
赵晓齐, 鲁如坤. 有机肥对土壤磷素吸附的影响. 土壤学报, 1991, 28(1): 7-13.
ZHAO X Q, LU R K. Effect of organic manures on soil phosphorus adsorption. Acta Pedologica Sinica, 1991, 28(1): 7-13. (in Chinese)
[11]
DALAI R C. Soil organic phosphorus. Advances in Agronomy. Amsterdam: Elsevier, 1977: 83-117.
[12]
吕家珑, 刘文革, 王旭东, 李祖荫. 长期施肥对土壤无机磷形态组成的影响. 西北农业大学学报, 1995, 23(3): 51-54.
J L, LIU W G, WANG X D, LI Z Y. Effect of long term fertilization on inorganic-P form composition in soil. Acta Universitatis Agriculturae Boreali-Occidentalis, 1995, 23(3): 51-54. (in Chinese)
[13]
HINSINGER P, GOBRAN G R, GREGORY P J, WENZEL W W. Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. The New Phytologist, 2005, 168(2): 293-303.
[14]
王树起, 韩晓增, 乔云发, 王守宇. 长期施肥对东北黑土酶活性的影响. 应用生态学报, 2008, 19(3): 551-556.
WANG S Q, HAN X Z, QIAO Y F, WANG S Y. Effects of long-term fertilization on enzyme activities in black soil of Northeast China. Chinese Journal of Applied Ecology, 2008, 19(3): 551-556. (in Chinese)
[15]
杨艳菊, 王改兰, 张海鹏, 赵旭, 熊静, 黄学芳. 长期施用不同肥料对栗褐土有机磷组分的影响. 土壤, 2013, 45(3): 426-429.
YANG Y J, WANG G L, ZHANG H P, ZHAO X, XIONG J, HUANG X F. Effects of long-term different fertilization on organic phosphorus forms in cinnamon soil. Soils, 2013, 45(3): 426-429. (in Chinese)
[16]
李花, 葛玮健, 马晓霞, 黎青慧, 任卫东, 杨学云, 张树兰. 小麦-玉米轮作体系长期施肥对蝼土微生物量碳、氮及酶活性的影响. 植物营养与肥料学报, 2011, 17(5): 1140-1146.
LI H, GE W J, MA X X, LI Q H, REN W D, YANG X Y, ZHANG S L. Effects of long-term fertilization on carbon and nitrogen and enzyme activities of soil microbial biomass under winter wheat and summer maize rotation system. Journal of Plant Nutrition and Fertilizers, 2011, 17(5): 1140-1146. (in Chinese)
[17]
COOKE G W. Long-term fertilizer experiments in England. Agronomy, 1976, 27: 503-536.
[18]
向春阳, 马艳梅, 田秀平. 长期耕作施肥对白浆土磷组分及其有效性的影响. 作物学报, 2005, 31(1): 48-52.
XIANG C Y, MA Y M, TIAN X P. Effects of long-term culture and fertilization on the contents of forms of phosphorus and their availability in albic soil. Acta Agronomica Sinica, 2005, 31(1): 48-52. (in Chinese)
[19]
路鹏, 李文海, 牛金璨, Batbayar Javkhlan, 张树兰, 杨学云. 不同有机碳水平下塿土磷的有效性及无机磷形态转化. 中国农业科学, 2022, 55(1): 111-122. doi: 10.3864/j.issn.0578-1752.2022.01.010.
LU P, LI W H, NIU J C, BATBAYAR JAVKHLAN, ZHANG S L, YANG X Y. Phosphorus availability and transformation of inorganic phosphorus forms under different organic carbon levels in a tier soil . Scientia Agricultura Sinica, 2022, 55(1): 111-122. doi: 10.3864/j.issn.0578-1752.2022.01.010. (in Chinese)
[20]
张为政. 土壤磷组分对有效磷影响的通径分析及其相对重要性. 吉林农业科学, 1988, 13(3): 49-53.
ZHANG W Z. Path analysis for the effect of phosphorus poles on available phosphorus in soil and the relative importance. Journal of Jilin Agricultural Sciences, 1988, 13(3): 49-53. (in Chinese)
[21]
刘世亮, 介晓磊, 李有田, 谭金芳, 安志装. 不同磷源在石灰性土壤中的供磷能力及形态转化. 河南农业大学学报, 2002, 36(4): 370-373.
LIU S L, JIE X L, LI Y T, TAN J F, AN Z Z. Study on bio-availability and transformation of different phosphates in calcareous soils. Journal of Henan Agricultural University, 2002, 36(4): 370-373. (in Chinese)
[22]
李和生, 王林权, 赵春生. 小麦根际磷酸酶活性与有机磷之关系. 西北农业大学学报, 1997, 25(2): 47-50.
LI H S, WANG L Q, ZHAO C S. Relationship between phosphatase activity and organic phosphorus in wheat rhizosphere. Acta Universitatis Agriculturae Boreali-Occidentalis, 1997, 25(2): 47-50. (in Chinese)
[23]
安志装, 介晓磊, 李有田, 白由路, 魏义长, 刘世亮. 不同水分和添加物料对石灰性土壤无机磷形态转化的影响. 植物营养与肥料学报, 2002, 8(1): 58-64.
AN Z Z, JIE X L, LI Y T, BAI Y L, WEI Y C, LIU S L. Effect of different water and material on inorganic phosphorus transformation in calcareous soil. Journal of Plant Nutrition and Fertilizers, 2002, 8(1): 58-64. (in Chinese)
[24]
张福锁. 土壤与植物营养研究新动态-第一卷. 北京: 中国农业大学出版社, 1992.
ZHANG F S. New Trends in Soil and Plant Nutrition Research. Volume I. Beijing: China Agricultural University Press, 1992. (in Chinese)
[25]
陈凯, 马敬, 曹一平, 张福锁. 磷亏缺下不同植物根系有机酸的分泌. 中国农业大学学报, 1999, 4(3): 58-62.
CHEN K, MA J, CAO Y P, ZHANG F S. Exudation of organic acids by the roots of different plant species under phosphorus deficiency. Journal of China Agricultural University, 1999, 4(3): 58-62. (in Chinese)
[26]
李法云, 高子勤. 白浆土-植物系统营养物质转化机制及其有效性研究Ⅳ.环境条件对土壤磷素有效性的影响. 应用生态学报, 1999, 10(5): 579-582.
LI F Y, GAO Z Q. Transformation mechanism and availability of nutrients in albic soil-plant system Ⅳ. Effect of environmental factors on phosphorus availability in albic soil. Chinese Journal of Applied Ecology, 1999, 10(5): 579-582. (in Chinese)
[27]
陆文龙, 张福锁, 曹一平, 王敬国. 低分子量有机酸对石灰性土壤磷吸附动力学的影响. 土壤学报, 1999, 36(2): 189-197.
LU W L, ZHANG F S, CAO Y P, WANG J G. Influence of low-molecular weight organic acids on kinetics of phosphorus adsorption by soils. Acta Pedologica Sinica, 1999, 36(2): 189-197. (in Chinese)
[28]
LU P, ZHANG Y M, JI B J, YAN Y, WANG Z P, YANG M, ZHANG S L, YANG X Y. PhoD harboring microbial community and alkaline phosphatase as affected by long term fertilization regimes on a calcareous soil. Agronomy, 2023, 13(2): 363.
[29]
LI J B, XIE T, ZHU H, ZHOU J, LI C N, XIONG W L, XU L, WU Y H, HE Z L, LI X Z. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma, 2021, 404: 115376.
[30]
WILLIAMS M A, MYROLD D D, BOTTOMLEY P J. Carbon flow from 13C-labeled clover and ryegrass residues into a residue- associated microbial community under field conditions. Soil Biology and Biochemistry, 2007, 39(3): 819-822.
[31]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[32]
TABATABAI M A, BREMNER J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1969, 1(4): 301-307.
[33]
BOWMAN R A, COLE C V. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Science, 1978, 125(2): 95-101.
[34]
顾益初, 蒋柏藩, 鲁如坤. 风化对土壤粒级中磷素形态转化及其有效性的影响. 土壤学报, 1984, 21(2):134-143.
GU Y C, JIANG B F, LU R K. Effect of weathering on phosphorus speciation transformation and its availability in soil fractions. Acta Pedologica Sinica, 1984, 21(2):134-143. (in Chinese)
[35]
王旭东, 张一平, 李祖荫. 有机磷在塿土中组成变异的研究. 土壤肥料, 1997(5): 16-18.
WANG X D, ZHANG Y P, LI Z Y. Research on composition variation of organic phosphorus in Lou soil. Soil and Fertilizer Sciences in China, 1997(5): 16-18. (in Chinese)
[36]
尹岩, 梁成华, 杜立宇, 吴岩. 施用有机肥对土壤有机磷转化的影响研究. 中国土壤与肥料, 2012(4): 39-43.
YIN Y, LIANG C H, DU L Y, WU Y. Effect of manure on transformation of organic phosphorus in paddy soil. Soil and Fertilizer Sciences in China, 2012(4): 39-43. (in Chinese)
[37]
李和生, 马宏瑞, 赵春生. 根际土壤有机磷的分组及其有效性分析. 土壤通报, 1998(3): 21-23.
LI H S, MA H R, ZHAO C S. Classification of organic phosphorus in rhizosphere soil and analysis of its availability. Chinese Journal of Soil Science, 1998(3): 21-23. (in Chinese)
[38]
吕家珑, 张一平, 陶国树, 韩新宁. 23年肥料定位试验0-100cm土壤剖面中各形态磷之间的关系研究. 水土保持学报, 2003, 3, 17(3): 48-50.
J L, ZHANG Y P, TAO G S, HAN X N. Relationship among phosphorus forms in 0-100cm soil profiles after 23 year application of fertilizers. Journal of Soil and Water Conservation, 2003, 17(3): 48-50. (in Chinese)
[39]
徐达兼, 杨锴, 孟鹏飞, 朗明, 郭涛. 不同磷水平土壤以碳促磷效应研究. 植物营养与肥料学报, 2023, 29(11): 2095-2107.
XU D J, YANG K, MENG P F, LANG M, GUO T. Effects of exogenous carbon addition on the effectiveness of phosphorus under two soil phosphorus levels. Journal of Plant Nutrition and Fertilizers, 2023, 29(11): 2095-2107. (in Chinese)
[40]
STEWART R E, HODGES S C, MULVANEY M J, PAVULURI K, THOMASON W E. Rhizosphere phosphorus solubility and plant uptake as affected by crop in a clay soil from the central plateau region of Haiti. Communications in Soil Science and Plant Analysis, 2014, 45(5): 703-712.
[41]
WANG Y L, KROGSTAD T, CLARKE J L, HALLAMA M, ØGAARD A F, EICH-GREATOREX S, KANDELER E, CLARKE N. Rhizosphere organic anions play a minor role in improving crop species' ability to take up residual phosphorus (P) in agricultural soils low in P availability. Frontiers in Plant Science, 2016, 7: 1664.

pmid: 27872635
[42]
TENG Z D, ZHU Y Y, LI M, WHELAN M J. Microbial community composition and activity controls phosphorus transformation in rhizosphere soils of the Yeyahu Wetland in Beijing, China. The Science of the Total Environment, 2018, 628/629: 1266-1277.
[43]
MOORBERG C J, VEPRASKAS M J, NIEWOEHNER C P. Phosphorus dissolution in the rhizosphere of bald cypress trees in restored wetland soils. Soil Science Society of America Journal, 2015, 79(1): 343-355.
[44]
张雪, 朱波. 三峡库区支流库湾消落带土壤磷形态赋存特征及其释放风险. 环境科学, 2023, 44(5): 2574-2582.
ZHANG X, ZHU B. Distribution and release potential of soil phosphorus fractions in water-level fluctuation zone of the tributary bay, Three Gorges Reservoir. Environmental Science, 2023, 44(5): 2574-2582. (in Chinese)
[45]
王晓锋, 刘婷婷, 龚小杰, 袁兴中, 刘欢, 孔维苇. 三峡库区消落带典型植物根际土壤磷形态特征. 生态学报, 2020, 40(4): 1342-1356.
WANG X F, LIU T T, GONG X J, YUAN X Z, LIU H, KONG W W. Phosphorus forms in rhizosphere soils of four typical plants in the Littoral Zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2020, 40(4): 1342-1356. (in Chinese)
[46]
刘娜, 马旭东, 慕君, 范庭, 王旭东. 不同类型有机物料的有机磷组成及生物有效性. 植物营养与肥料学报, 2021, 27(3): 440-449.
LIU N, MA X D, MU J, FAN T, WANG X D. The composition of organic phosphorus and bioavailability of different organic materials. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 440-449. (in Chinese)
[47]
刘津, 李春越, 邢亚薇, 王益, 薛英龙, 王苁蓉, 党廷辉. 长期施肥对黄土旱塬农田土壤有机磷组分及小麦产量的影响. 应用生态学报, 2020, 31(1): 157-164.

doi: 10.13287/j.1001-9332.202001.028
LIU J, LI C Y, XING Y W, WANG Y, XUE Y L, WANG C R, DANG T H. Effects of long-term fertilization on soil organic phosphorus fractions and wheat yield in farmland of Loess Plateau. Chinese Journal of Applied Ecology, 2020, 31(1): 157-164. (in Chinese)

doi: 10.13287/j.1001-9332.202001.028
[48]
BOWMAN R A, COLE C V. Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction. Soil Science, 1978, 125(1): 49-54.
[49]
沈仁芳. 潮土无机磷的形态及其分布特点. 河南农业科学, 1992, 21(12): 24-25.
SHEN R F. Speciation and distribution characteristics of inorganic phosphorus in fluvo-aquic soil. Journal of Henan Agricultural Sciences, 1992, 21(12): 24-25. (in Chinese)
[50]
陈静, 黄占斌. 腐植酸在土壤修复中的作用. 腐植酸, 2014(4): 30-34, 65.
CHEN J, HUANG Z B. Effect of humic acid on soil restoration. Humic Acid, 2014(4): 30-34, 65. (in Chinese)
[51]
冶赓康, 俄胜哲, 陈政宇, 袁金华, 路港滨, 张鹏, 刘雅娜, 赵天鑫, 王钰轩. 土壤中磷的存在形态及分级方法研究进展. 中国农学通报, 2023, 39(1): 96-102.

doi: 10.11924/j.issn.1000-6850.casb2022-0041
YE G K, E S Z, CHEN Z Y, YUAN J H, LU G B, ZHANG P, LIU Y N, ZHAO T X, WANG Y X. The forms and classification methods of phosphorus in soil: research progress. Chinese Agricultural Science Bulletin, 2023, 39(1): 96-102. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0041
[52]
WU J S, HUANG M, XIAO H A, SU Y R, TONG C L, HUANG D Y, SYERS J K. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments. Plant and Soil, 2007, 290(1): 333-342.
[53]
李文华, 邵学新, 吴明, 叶小齐. 杭州湾潮滩湿地土壤碱性磷酸酶活性分布及其与磷形态的关系. 环境科学学报, 2013, 33(12): 3341-3349.
LI W H, SHAO X X, WU M, YE X Q. Soil alkaline phosphatase activity and its relationship with phosphorus forms of Hangzhou Bay Intertidal Wetland. Acta Scientiae Circumstantiae, 2013, 33(12): 3341-3349. (in Chinese)
[54]
郭智芬, 涂书新, 李晓华, 潘勇, 张宜春. 石灰性土壤不同形态无机磷对作物磷营养的贡献. 中国农业科学, 1997, 30(1): 26-32.
GUO Z F, TU S X, LI X H, PAN Y, ZHANG Y C. Contribution of different forms of inorganic phosphates in calcareous soils to phosphorus nutrition of crops. Scientia Agricultura Sinica, 1997, 30(1): 26-32. (in Chinese)
[1] LI YunLi, DIAO DengChao, LIU YaRui, SUN YuChen, MENG XiangYu, WU ChenFang, WANG Yu, WU JianHui, LI ChunLian, ZENG QingDong, HAN DeJun, ZHENG WeiJun. Genome-Wide Association Study of Heat Tolerance at Seedling Stage in A Wheat Natural Population [J]. Scientia Agricultura Sinica, 2025, 58(9): 1663-1683.
[2] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[3] BAI YuXin, LIU LingZhi, AN TingTing, LI ShuangYi, WANG JingKuan. Eeffects of Long-Term Fertilization on Bacterial Community Structure and Carbon Metabolic Functions in Brown Soil [J]. Scientia Agricultura Sinica, 2025, 58(8): 1579-1590.
[4] WU Yu, QU XiangRu, YANG Dan, WU Qin, CHEN GuoYue, JIANG QianTao, WEI YuMing, XU Qiang. Widespread Non-Targeted Metabolomics Reveals Metabolites of Chloroplasts in Wheat Responses to Stripe Rust [J]. Scientia Agricultura Sinica, 2025, 58(7): 1333-1343.
[5] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[6] PAN LiYuan, WANG YongJun, LI HaiJun, HOU Fu, LI Jing, LI LiLi, SUN SuYang. Screening Regulatory Genes Related to Wheat Grain Protein Accumulation Based on Transcriptome and WGCNA Analysis [J]. Scientia Agricultura Sinica, 2025, 58(6): 1065-1082.
[7] TANG Yu, LEI BiXin, WANG ChuanWei, YAN XuanTao, WANG Hao, ZHENG Jie, ZHANG WenJing, MA ShangYu, HUANG ZhengLai, FAN YongHui. Response Mechanism of Anthocyanin Accumulation in Colored Wheat to Post-Anthesis High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(6): 1083-1101.
[8] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[9] ZHANG Ling, CAO Lei, CAI Cheng, YAN XinYi, XIANG BoCai, AI Jia, ZHAN XinYang, SONG YouHong, ZHU YuLei. Changes in Seed Vigor and Physiological Index of Winter Wheat Under Natural Aging Condition [J]. Scientia Agricultura Sinica, 2025, 58(5): 877-889.
[10] SHE WenTing, SUN RuiQing, DANG HaiYan, LI WenHu, ZHANG Feng, TIAN Yi, XU JunFeng, DING YuLan, WANG ZhaoHui. Sulfur Concentration and Distribution in Wheat Grain Sampled from Farmers’ Fields in Main Wheat Production Regions of China and Its Affecting Factors [J]. Scientia Agricultura Sinica, 2025, 58(5): 956-974.
[11] ZHANG Tao, WANG Huan, XIE HongKai, CHEN YinJi. Formation and Structure of Wheat Bran Polysaccharide-Golden Threadfin Bream Surimi Blended Gel [J]. Scientia Agricultura Sinica, 2025, 58(5): 1004-1016.
[12] DIAO DengChao, LI YunLi, MENG XiangYu, JI SongHan, SUN YuChen, MA XueHong, LI Jie, FENG YongJia, LI ChunLian, WU JianHui, ZENG QingDong, HAN DeJun, $\boxed{\hbox{WANG ChangFa}}$, ZHENG WeiJun. Cloning and Heat Tolerance Function of Wheat TaGRAS34-5A Gene [J]. Scientia Agricultura Sinica, 2025, 58(4): 617-634.
[13] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[14] MU ShuJia, DONG LiXia, LI Guang, YAN ZhenGang, LU YuLan. Optimization of N2O Emission Parameters in Dryland Spring Wheat Farmland Soil Based on Whale Optimization Algorithm [J]. Scientia Agricultura Sinica, 2025, 58(3): 537-547.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!