Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (10): 1917-1937.doi: 10.3864/j.issn.0578-1752.2022.10.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Adaptability Evaluation of Staple Crops Under Different Precipitation Year Types in Four Ecological Regions of Inner Mongolia Based on APSIM

LIU XiaXia(),LI Yang,WANG Jing(),HUANG MingXia,BAI Rui,SONG Yang,HU Qi,ZHANG JiaYing,CHEN RenWei   

  1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
  • Received:2021-08-15 Accepted:2021-12-01 Online:2022-05-16 Published:2022-06-02
  • Contact: Jing WANG E-mail:lxx13613463078@163.com;wangj@cau.edu.cn

Abstract:

【Objective】 In order to provide the important scientific reference for optimizing the layout of staple crops in Inner Mongolia, the adaptability of staple crops (maize, potato, oats, canola, oil and edible sunflower) was evaluated in four ecological regions of Inner Mongolia under different precipitation year types.【Method】Four typical sites in four ecological regions were selected. The validated APSIM model was used to quantify the potential yields, rainfed yields and yield gaps of six crops. Yield reduction rates of rainfed yields relative to potential yields under different precipitation year types were calculated to evaluate the adaptability of staple crops. Crop water production functions were conducted to analyze crop water sensitivity. 【Result】RMSE between simulated and observed vegetative growth period, reproductive growth period, dry yield was 10.1 d, 8.9 d, and 1 322.4 kg·hm-2, respectively. NRMSE between observed and simulated vegetative growth period, reproductive growth period, and dry yield was 14.6%, 19.2%, and 22.6%, respectively. The validation results showed that APSIM could effectively simulate the growth, development, and yield of each crop in different regions. The potential dry yields of maize, potato, oats, canola, oil sunflower, and edible sunflower were 12 024±4 874, 7 315±806, 6 611±906, 2 424±326, 2 721±205, and 4 905±428 kg·hm-2, respectively. The potential yields of oats and edible sunflower reached the maximum values in the north foot of Yinshan Mountains while potential yields of other four crops reached the maximum values in the Loess Plateau. The rainfed dry yields of maize, potato, oats, canola, oil sunflower, and edible sunflower were 3 056±2 902, 3 337±1 608, 2 974±1 677, 912±511, 869±618, and 1 508±984 kg·hm-2, respectively. Average rainfed yields of the six crops increased from west to east and reached the maximum values in Da Hinggan Mountains. Yield gaps of maize, potato, oats, canola, oil sunflower, and edible sunflower were 8 968±5 844, 3 978±2 358, 3 637± 2 122, 1 512±832, 1 852±749, and 3 397±1 328 kg·hm-2, respectively. Except maize and oats, the yield gaps of four crops decreased from west to east and reached the minimum values in Da Hinggan Mountains. Taking the yield reduction rate from potential to rainfed conditions as the drought index under the rainfed condition and considering the variation coefficients of rainfed yields, it was not suitable to plant crops in any years in the Loess Plateau. In the north foot of Yinshan Mountains, crops were not suitable for planting in dry years. Potato was suitable for planting in normal years, while potato and oats were suitable for planting in wet years. At the foothills of Yanshan hilly area, crops were not suitable for planting in dry years. Potato and oats were suitable for planting in normal years while six crops were all suitable for planting in wet years. In Da Hinggan Mountains, potato, oats, canola, and edible sunflower were suitable for planting in dry years, while six crops were all suitable for planting in normal and wet years. The linear correlations between the relative evapotranspiration and the relative yield of the six crops were all significant (P<0.01) with R2 ranging from 0.84 to 0.99. The sensitivity of crop to water stress was in the order of oil sunflower, edible sunflower, maize, oats, canola, and potato.【Conclusion】This study revealed the adaptability of staple crops under different precipitation year types in the four ecological regions of Inner Mongolia. There was a large difference in water sensitivity of six crops. Under rainfed condition, potato were suitable for planting in normal and wet years in the north foot of Yinshan Mountains and the foothills of Yanshan hilly area, and in all year types in Da Hinggan Mountains. Oats were suitable for planting in wet years in the north foot of Yinshan Mountains, in normal and wet years in the foothills of Yanshan hilly area and in all year types in Da Hinggan Mountains. Canola and edible sunflower were suitable for planting only in wet years in the foothills of Yanshan hilly area and in all year types in Da Hinggan Mountains. Maize and oil sunflower were suitable for planting only in wet years in the foothills of Yanshan hilly area and in normal and wet years in Da Hinggan Mountains.

Key words: rainfed agriculture, guaranteed rate of precipitation, precipitation year type, yield reduction rate, adaptability

Fig. 1

Ecotope division and the typical sites across Inner Mongolia"

Fig. 2

Growing season (April-Sepetember) solar radiation (a), mean temperature (b), and precipitation (c) at each typical site in Inner Mongolia The solid line and “●” in the box body represent the median and mean values, respectively. The upper and lower boundary of the box body represent 75% and 25% points, respectively. The short lines outside the box body represent the maximum and minimum values, respectively"

Table 1

Physical parameters of soil profiles at each site"

站点
Site
土层
Soil layer (cm)
容重
Bulk density
(g·cm-3)
饱和含水量
Saturated water content (mm·mm-1)
田间持水量
Field capacity
(mm·mm-1)
凋萎含水量
Wilting water content (mm·mm-1)
鄂托克旗 Etuokeqi 0—100 1.45±0.05 0.47±0.008 0.43±0.03 0.27±0.05
武川 Wuchuan 0—100 1.42±0.04 0.44±0.04 0.26±0.03 0.11±0.01
赤峰 Chifeng 0—100 1.37±0.06 0.48±0.02 0.37±0.02 0.22±0.22
扎兰屯 Zhalantun 0—100 1.43±0.10 0.46±0.04 0.27±0.03 0.12±0.02

Table 2

Resource for crop genetic parameters in the APSIM model and its validation information"

作物
Crop
参数来源 Parameter resource 验证数据 Validation data
品种
Cultivar
站点
Site
年份
Year
参考文献 Reference 品种
Cultivar
站点
Site
年份
Year
参考文献 Reference
玉米
Maize
郑单958
Zhengdan958
林甸县吉祥村
Jixiang Village, Lindian County
2012—2014 [32] 郑单958
Zhengdan958
中国农业大学北京上庄试验站
Beijing Shangzhuang Experimental Station of China Agricultural University
2008—2009 [35]
郑单958
Zhengdan958
呼和浩特市内蒙古农业大学科技园区试验基地
Inner Mongolia Agricultural University Science Park Experimental Base in Hohhot
2013 [36]
金凯3号
Jinkai 3
榆中县石头沟旱地农业推广基地
Dryland Agricultural Promotion Base in Shitou Gully, Yuzhong County
2015—2016 [37]
郑单958
Zhengdan958
喀喇沁旗水泉沟
Shuiquan Gully, Kalaqin Banner
2017—2019 [38]
马铃薯
Potato
克新一号
Kexin_1
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2017—2018 [39] 克新一号
Kexin_1
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2010 [2]
克新一号
Kexin_1
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2015—2017 [40]
克新一号
Kexin_1
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2019—2020 本研究
This study
莜麦
Oats
草莜一号
Caoyou 1
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2009—2013 [14] 草莜一号
Caoyou 1
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2009—2010 [2]
油菜
Canola
大黄
Bigyellow
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2009—2012 [33] 大黄
Bigyellow
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2010 [2]
青杂5号
Qingza 5
海东市平安区沙沟乡
Shagou Village, Ping ' an District, Haidong City
2019 [41]
圣光402
Shengguang 402
民乐县永固镇西村
West Village, Yonggu Town, Minle County
2019 [41]
油葵
Oil sunflower
内葵杂3号
Neikuiza_3
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2014—2015 [34] 内葵杂强
Neikuizaqiang
武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2010 [2]
食葵
Edible sunflower
SF3368 武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2014—2015 [34] SH361 武川农业环境科学观测试验站
The Scientific and Observational Experimental Station of Agro- environment in Wuchuan
2013—2014 [42]

Table 3

Main phenological parameters of six crop cultivars in the APSIM model"

作物
Crop
参数和定义
Parameter and definition
参数值
Parameter value
玉米
Maize
tt_emerg_to_endjuv (°C·d) 出苗—幼年期结束所需有效积温 Thermal time required from emergence to end of juvenile 200
tt_flower_to_maturity (°C·d) 开花—成熟所需有效积温 Thermal time required from flower to maturity 700
马铃薯
Potato
y_tt_emergence (°C·d) 出苗—现蕾所需有效积温 Degree days from emergence to earlytuber 335
tt_earlytuber (°C·d) 现蕾—开花所需有效积温 Degree days from earlytuber to senescing 210
tt_senescing (°C·d) 开花—成熟所需有效积温 Degree days from senescing to maturity 660
莜麦
Oats
tt_end_of_juvenile (°C·d) 幼苗阶段所需有效积温 Thermal time required from end of juvenile stage to floral initiation 425
tt_floral_initiation (°C·d) 花芽分化阶段所需有效积温 Thermal time required from floral initiation stage to flowering 420
tt_flowering (°C·d) 开花期所需有效积温 Thermal time required from flowering to start of grain flling 150
油菜
Canola
CTTJuv_max (°C·d) 完成幼年期所需有效积温 Maximum thermal time required to complete the juvenile phase when not vernalized 231
CTTFI_max (°C·d) 完成光周期敏感阶段所需有效积温
Maximum thermal time required to complete the photoperiod sensitive stage for photoperiod less than 10.8 h
370
CTTGF (°C·d) 完成灌浆阶段所需有效积温 Thermal time for the grain filling period 640
油葵
Oil sunflower
tt_endjuv_to_init (°C·d) 幼年期结束—花芽分化所需有效积温 Thermal time required from end of juvenile to floral initiation 410
tt_fi_to_flag (°C·d) 花芽分化—旗叶所需有效积温 Thermal time required from floral initiation to flag leaf 400
tt_flower_to_maturity (°C·d) 开花—成熟所需有效积温 Thermal time required from flower to maturity 700
食葵
Edible sunflower
tt_endjuv_to_init (°C·d) 幼年期结束—花芽分化所需有效积温 Thermal time required from end of juvenile to floral initiation 220
tt_fi_to_flag (°C·d) 花芽分化—旗叶所需有效积温 Thermal time required from floral initiation to flag leaf 280
tt_flower_to_maturity (°C·d) 开花—成熟所需有效积温 Thermal time required from flower to maturity 910

Table 4

Setting up for long-term simulation scenarios"

作物
Crop
播期
Planting date (<BOLD>M</BOLD><BOLD>-</BOLD><BOLD>D</BOLD>)
密度
Planting density (plants/m2)
深度
Planting depth (mm)
行距
Row spacing (mm)
参考文献
Reference
玉米 Maize 05-10 6.15 50 650 [43]
马铃薯 Potato 05-15 5 80 500 [44]
莜麦 Oats 05-20 128 50 250 [14]
油菜 Canola 05-02 15 40 250 [45]
油葵 Oil sunflower 05-15 5 95 500 [34]
食葵 Edible sunflower 05-05 4 95 500 [34]

Table 5

Division of precipitation year type at each site"

站点
Site
降水年型
Precipitation year type
降水保证率
Guaranteed rate of
precipitation (%)
生长季降雨量(平均值)
Growing season precipitation (average) (mm)
生长季降水变异系数
Coefficient of variation of growing season precipitation (%)
鄂托克旗
Etuokeqi
丰水年 Wet year ≤25 285-423 (332) 13
平水年 Normal year 26-75 175-284 (221) 16
枯水年 Dry year >75 112-174 (136) 14
武川
Wuchuan
丰水年 Wet year ≤25 357-430 (398) 7
平水年 Normal year 26-75 249-357 (300) 9
枯水年 Dry year >75 141-248 (210) 11
赤峰
Chifeng
丰水年 Wet year ≤25 393-552 (445) 13
平水年 Normal year 26-75 259-392 (316) 11
枯水年 Dry year >75 205-258 (232) 8
扎兰屯
Zhalantun
丰水年 Wet year ≤25 528-1050 (676) 24
平水年 Normal year 26-75 416-527 (471) 7
枯水年 Dry year >75 190-415 (297) 22

Fig. 3

Comparison between observed and simulated vegetative growth period, reproductive growth period, and dry yield of six crops by APSIM The dash lines is 1﹕1 line. * represents P<0.05; ** represents P<0.01. The same as below"

Fig. 4

Potential yields, rainfed yields and yield gaps of six crops in four ecological regions in Inner Mongolia HT, YS, YQ, and DX represent Loess Plateau, North foot of Yinshan Mountains, Foothills of Yanshan hilly, and Da Hinggan Mountains, respectively. The solid line and “×” in the box body represent the median and mean values, respectively. The upper and lower boundaries of the box body represent 75% and 25% points, respectively. The short lines outside the box body represent the maximum and minimum values, respectively. “●” outside the box body represents the outlier value. The same as below"

Table 6

Relationships between the potential (Yp) and rainfed (Yr) yields of six crops with growth period solar radiation, mean temperature and precipitation in four ecological regions in Inner Mongolia"

作物
Crop
产量
Yield
地区
Region
辐射 Solar radiation 温度 Temperature 降水 Precipitation
斜率 Slope R2 斜率 Slope R2 斜率 Slope R2
玉米
Maize
Yp I 6.17 0.61** -781.81 0.37** 2.47 0.03
3.28 0.13* 2715.41 0.60** -1.73 0.01
6.74 0.57** -1140.15 0.63** 4.27 0.08
9.14 0.35** 2122.88 0.44** -4.96 0.10
Yr I 0.23 0.04 46.36 0.00 3.52 0.14*
1.19 0.02 1002.57 0.12* 9.63 0.06
-4.86 0.16* -18.81 0.01 32.45 0.71**
-5.42 0.07 -250.19 0.01 9.69 0.21**
马铃薯
Potato
Yp I 4.73 0.49** -20.95 0.01 -1.88 0.02
4.53 0.74** -284.72 0.12* 0.00 0.01
4.57 0.59** 456.41 0.08 -5.98 0.24**
5.19 0.67** 812.46 0.20** -4.49 0.27**
Yr I 1.02 0.27** 378.79 0.06 8.74 0.39**
2.02 0.06 -363.83 0.03 11.65 0.17*
-4.36 0.22** -1019.36 0.11* 15.91 0.40**
0.90 0.03 -187.10 0.01 -0.58 0.01
莜麦
Oats
Yp I 5.84 0.66** -437.11 0.27** 2.03 0.04
4.09 0.81** -570.02 0.60** 4.42 0.12*
3.05 0.29** -256.22 0.17* -0.91 0.02
3.49 0.49** -101.09 0.01 -0.67 0.02
Yr I 0.93 0.24** 466.75 0.11* 6.03 0.26**
1.68 0.09 -190.91 0.02 8.65 0.16*
-0.61 0.01 -1079.51 0.28** 9.38 0.18*
0.38 0.01 -791.34 0.31** 2.71 0.12*
油菜
Canola
Yp I 0.81 0.12* -177.88 0.13* 0.66 0.03
1.29 0.59** -25.49 0.01 -0.55 0.02
0.59 0.11 29.46 0.003 -1.23 0.11
0.01 0.70** 4.58 0.67** -0.01 0.33**
Yr I 0.22 0.23** 1114.12 0.19** 2.22 0.38**
0.39 0.17* 63.78 0.03 3.00 0.30**
0.12 0.01 -39.64 0.01 4.66 0.65**
-0.50 0.10 -140.96 0.06 1.12 0.17*
油葵
Oil sunflower
Yp I 1.41 0.46** -171.05 0.29** 1.22 0.13*
-0.06 0.01 114.13 0.12* -0.03 0.03
0.53 0.05 -178.14 0.36** 0.52 0.04
0.35 0.04 -118.42 0.15* 0.19 0.02
作物
Crop
产量
Yield
地区
Region
辐射 Solar radiation 温度 Temperature 降水 Precipitation
斜率 Slope R2 斜率 Slope R2 斜率 Slope R2
Yr I 0.26 0.44** 42.21 0.03 2.00 0.58**
0.17 0.01 -104.02 0.05 4.11 0.29**
-0.66 0.05 -302.79 0.22** 4.98 0.61**
-1.97 0.31** -341.15 0.21** 2.26 0.32**
食葵
Edible sunflower
Yp I 1.57 0.46** -161.12 0.19* 0.79 0.06
0.94 0.23** -105.79 0.08 2.34 0.16*
1.04 0.10 -237.36 0.31** 0.38 0.01
1.28 0.29** -153.92 0.10 -0.26 0.01
Yr I 0.42 0.33** 143.43 0.20** 3.01 0.33**
0.65 0.13* 11.04 0.03 5.47 0.32**
0.50 0.02 -331.11 0.09 7.27 0.52**
-1.72 0.16* -640.63 0.31** 3.57 0.38**

Fig. 5

Yield reduction rates of six staple crops under different precipitation year types in four ecological regions in Inner Mongolia"

Fig. 6

Crop water production functions for six crops"

Table 7

Irrigated and rainfed yields of six crops"

灌溉产量 Irrigated yield (kg·hm-2) 雨养产量 Rainfed yield (kg·hm-2) 参考文献 Reference
玉米 Maize 10 600—16 000 2 250 [68]
马铃薯 Potato 8 182 2 098 [69]
莜麦 Oats 6 075 3 080 [70]
油菜 Canola 2 274 802 [71]
油葵 Oil sunflower 3 430 985 [72]
食葵 Edible sunflower 3 991 1 501 [73]

Fig. 7

Meteorological yields of staple crops under different precipitation year types at typical sites in four ecological regions"

Fig. 8

Coefficients of variation of rainfed yields of six crops in four ecological regions in Inner Mongolia"

[1] 高宇, 张晓霞, 李彬, 任永峰, 赵沛义, 贾有余, 李焕春, 逯栓柱. 国内外旱作农业研究进展. 北方农业学报, 2016, 44(1): 102-108.
GAO Y, ZHANG X X, LI B, REN Y F, ZHAO P Y, JIA Y Y, LI H C, LU S Z. Rainfed agriculture research progress at domestic and overseas. Journal of Northern Agriculture, 2016, 44(1): 102-108. (in Chinese)
[59] DONG G S, ZHU J C. Meteorological conditions and suitable planting area of dry oats. Chinese Journal of Agrometeorology, 1994, 15(4): 5-8. (in Chinese)
[60] 王莎. 气候变化和管理措施对澳大利亚和中国油菜生产的影响[D]. 杨凌: 西北农林科技大学, 2014.
[2] 沈姣姣. 农牧交错带主要农作物适宜播期及气候适应性研究[D]. 北京: 中国农业大学, 2011.
SHEN J J. Study on optimalization of sowing date and climate suitability of main crops in Agro-pastoral ecotone[D]. Beijing: China Agricultural University, 2011. (in Chinese)
[3] 龚道枝, 郝卫平, 王庆锁, 严昌荣, 张燕卿, 梅旭荣. 中国旱作节水农业科技进展与未来研发重点. 农业展望, 2015, 11(5): 52-56.
GONG D Z, HAO W P, WANG Q S, YAN C R, ZHANG Y Q, MEI X R. Advances of dryland agriculture research in China and its outlook. Agricultural Outlook, 2015, 11(5): 52-56. (in Chinese)
[60] WANG S. Effects of climate change and management practices on rapeseed production in Australia and China[D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[61] TANG J Z, WANG J, HE D, HUANG M X, PAN Z H, PAN X B. Comparison of the impacts of climate change on potential productivity of different staple crops in the agro-pastoral ecotone of North China. Journal of Meteorological Research, 2016, 30(6): 983-997.
doi: 10.1007/s13351-016-6023-0
[4] 卜鉴琳. 内蒙古地区旱作农业发展研究. 福建农业, 2014(Z1): 118-119.
PU J L. The research of development of rainfed agriculture in Inner Mongolia. Fujian Agriculture, 2014(Z1): 118-119. (in Chinese)
[62] 孙向伟, 高飞翔. 内蒙古河套灌区油用向日葵高温胁迫的关键温度. 中国农学通报, 2017, 33(25): 110-115.
SUN X W, GAO F X. Critical temperature of oil sunflower under high temperature stress in Hetao Irrigation District, Inner Mongolia. Chinese Agricultural Science Bulletin, 2017, 33(25): 110-115. (in Chinese)
[63] 鄂尔多斯市统计局. 鄂尔多斯统计年鉴1987-2015. 北京: 中国统计出版社, 1987-2015.
Erdos Bureau of Statistics. Ordos Statistical Yearbook 1987-2015. Beijing: China Statistic Press, 1987-2015. (in Chinese)
[64] 呼和浩特市统计局. 呼和浩特统计年鉴1999-2015. 北京: 中国统计出版社, 1999-2015.
Hohhot Bureau of Statistics. Hohhot Statistical Yearbook 1999-2015. Beijing: China Statistic Press, 1999-2015. (in Chinese)
[65] 何文鑫, 徐玉霞, 马凯. 赤峰市近60多年气候变化特征分析及对粮食产量的影响. 河南科学, 2019, 37(12): 2002-2009.
HE W X, XU Y X, MA K. Climate change characteristics and its impact on grain yield in Chifeng city in recent 60 years. Henan Science, 2019, 37(12): 2002-2009. (in Chinese)
[66] 薛思嘉, 魏瑞江, 王朋朋, 刘园园, 杨梅. 基于关键气象因子的河北省马铃薯产量预报. 干旱气象, 2021, 39(1): 138-143.
XUE S J, WEI R J, WANG P P, LIU Y Y, YANG M. Potato yield forecast in Hebei province based on meteorological key factors. Arid Meteorology, 2021, 39(1): 138-143. (in Chinese)
[67] 邹宇锋. 河套灌区不同覆膜灌溉方式对农田土壤水盐调控及春玉米产量的影响[D]. 杨凌: 西北农林科技大学, 2020.
ZOU Y F. The regulation on water and salt of farmland soil and the effect of spring maize yield under different irrigation methods with mulching in Hetao Irrigation District[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
[68] 李勇, 程满金, 史宽治. 重视半干旱地区集雨补灌节水增产机理的研究. 内蒙古水利, 2010(1): 7-8.
LI Y, CHENG M J, SHI K Z. Emphasis is placed on the study of the mechanism of rainwater collection and supplementary irrigation for water-saving and yield increase in semi-arid areas. Inner Mongolia Water Resources, 2010(1): 7-8. (in Chinese)
[69] 秦军红, 陈有君, 周长艳, 庞保平, 蒙美莲. 膜下滴灌灌溉频率对马铃薯生长、产量及水分利用率的影响. 中国生态农业学报, 2013, 21(7): 824-830.
doi: 10.3724/SP.J.1011.2013.00824
QIN J H, CHEN Y J, ZHOU C Y, PANG B P, MENG M L. Effects of drip irrigation frequency under mulch on potato growth, yield and water use efficiency. Chinese Journal of Eco-Agriculture, 2013, 21(7): 824-830. (in Chinese)
doi: 10.3724/SP.J.1011.2013.00824
[70] 王利霞. 内蒙古地理条件与莜麦种植探析. 中国农业信息, 2016(9): 102-103.
WANG L X. Inner Mongolia geographical conditions and oats cultivation analysis. China Agricultural Information, 2016(9): 102-103. (in Chinese)
[71] MOHTASHAMI R, DEHNAVI M M, BALOUCHI H, FARAJI H. Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying. Agricultural Water Management, 2020, 232: 1-10.
[72] 樊秀荣, 翟永胜, 张艳, 米志恒, 孙祥春, 苏化洲, 孙秀云, 高海燕. 内蒙古河套灌区食用向日葵肥料对比试验. 安徽农业科学, 2017, 45(6): 24-25.
FAN X R, ZHAI Y S, ZHANG Y, MI Z H, SUN X C, SU H Z, SUN X Y, GAO H Y. Fertilizer comparison test on edible sunflower in Hetao Irrigation District. Journal of Anhui Agricultural Sciences, 2017, 45(6): 24-25. (in Chinese)
[73] 段玉, 妥德宝, 张君, 李焕春, 赵沛义, 安昊, 姚俊卿. 氮磷钾平衡施用对油用向日葵产量及肥料效率的影响. 植物营养与肥料学报, 2013, 19(3): 767-771.
DUAN Y, TUO D B, ZHANG J, LI H C, ZHAO P Y, AN H, YAO J Q. Effects of N, P and K fertilizers on yield and fertilizer efficiency of oil sunflower. Plant Nutrition and Fertilizer Science, 2013, 19(3): 767-771. (in Chinese)
[74] 孔令颖. 基于传统干湿指数的黄土高原气象干旱变化特征及其对旱作粮食产量的影响[D]. 杨凌: 西北农林科技大学, 2020.
KONG L Y. Spatial temporal variation of meteorological drought and its impacts on grain yield in Loess Plateau based on the traditional arid-wet index[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
[75] 边丽梅, 孙峰成, 董喆, 郑伟, 张丽妍, 张昊, 郝春雷, 慈艳华, 杜江洪, 孟繁盛. 燕山北部丘陵区春玉米品种耐密性评价及鉴定指标筛选. 作物研究, 2021, 35(1): 72-79.
BIAN L M, SUN F C, DONG Z, ZHENG W, ZHANG L Y, ZHANG H, HAO C L, CI Y H, DU J H, MENG F S. Evaluation of density-tolerance and selection of identification indexes of spring maize varieties in hilly areas of northern Yanshan. Crop Research, 2021, 35(1): 72-79. (in Chinese)
[76] 郭佳, 张宝林, 高聚林, 王志刚, 宋佳欣. 内蒙古东部农业热量资源的空间分异及玉米资源利用率. 西北农业学报, 2020, 29(3): 476-486.
GUO J, ZHANG B L, GAO J L, WANG Z G, SONG J X. Spatial heterogeneity of agricultural thermal resources and use efficiency of maize in eastern Inner Mongolia. Acta Agriculturae Boreali- occidentalis Sinica, 2020, 29(3): 476-486. (in Chinese)
[77] AKCURA M, CERS S. Evaluation of drought tolerance indices for selection of Turkish oat (Avena sativa L.) landraces under various environmental conditions. Zemdirbyste-Agriculture, 2011, 98 (2): 157-166.
[78] ZHANG Y, DUAN Y, NIE J Y, YANG J, REN J H, VAN DER WERF W, EVERS J B, ZHANG J, SU Z C, ZHANG L Z. A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agricultural Water Management, 2019, 225: 1-9.
[5] 罗瑞林. 气候变化对内蒙古春玉米产量影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2013.
LUO R L. Impacts of climate change on spring maize production in Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2013. (in Chinese)
[6] 康文钦, 杜磊, 于利峰, 侯智惠, 许洪滔, 赵俊利, 侯安宏. 阴山北麓地区降水特性和作物需水耦合关系分析--以武川县为例. 北方农业学报, 2020, 48(5): 83-89.
KANG W Q, DU L, YU L F, HOU Z H, XU H T, ZHAO J L, HOU A H. Analysis of the coupling relationship between precipitation characteristics and crop water demand in the northern area of Yinshan Mountain-Taking Wuchuan County as an example. Journal of Northern Agriculture, 2020, 48(5): 83-89. (in Chinese)
[7] 侯琼, 郭瑞清, 杨丽桃. 内蒙古气候变化及其对主要农作物的影响. 中国农业气象, 2009, 30(4): 560-564.
HOU Q, GUO R Q, YANG L T. Climate change and its impact on main crops in Inner Mongolia. Chinese Journal of Agrometeorology, 2009, 30(4): 560-564. (in Chinese)
[8] 孙继颖, 高聚林, 薛春雷, 李曼, 翟丽健. 不同品种大豆抗旱性能比较研究. 华北农学报, 2007(6): 91-97.
SUN J Y, GAO J L, XUE C L, LI M, ZHAI L J. Comparative experiment on drought resistant characters of different soybean varieties. Acta Agriculturae Boreali-Sinica, 2007(6): 91-97. (in Chinese)
[9] 刘星岑. 阴山北麓不同灌水量对马铃薯生长发育及产量的影响. 北方农业学报, 2019, 47(2): 79-82.
LIU X C. Effect on irrigation amount on potato growth and yield in the Yinshan Mountain arid area. Journal of Northern Agriculture, 2019, 47(2): 79-82. (in Chinese)
[10] 韩占江, 于振文, 王东, 张永丽. 测墒补灌对冬小麦干物质积累与分配及水分利用效率的影响. 作物学报, 2010, 36(3): 457-465.
doi: 10.3724/SP.J.1006.2010.00457
HAN Z J, YU Z W, WANG D, ZHANG Y L. Effects of supplemental irrigation based on testing soil moisture on dry matter accumulation and distribution and water use efficiency in winter wheat. Acta Agronomica Sinica, 2010, 36(3): 457-465. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00457
[79] 毕经伟. 向日葵芽苗期抗旱性研究[D]. 呼和浩特: 内蒙古农业大学, 2010.
BI J W. Studies on drought resistance in sunflower buds and seedling stage[D]. Hohhot: Inner Mongolia Agricultural University, 2010. (in Chinese)
[80] 赵轩微, 赵雅杰, 田振东, 胡树平, 赵榕, 任亚宁, 包海柱, 高聚林. 向日葵干物质转运及产量对播种期和栽培密度的响应. 作物杂志, 2021(3): 185-189.
ZHAO X W, ZHAO Y J, TIAN Z D, HU S P, ZHAO R, REN Y N, BAO H Z, GAO J L. Response of dry matter transportation and yield to sowing date and planting density on sunflower. Crops, 2021(3): 185-189. (in Chinese)
[81] 白春利, 赵和平, 师永明, 丁海君, 刘思博. 荒漠草原区“草田轮作”模式及牧草高效种植技术. 畜牧与饲料科学, 2019, 40(8): 47-49.
BAI C L, ZHAO H P, SHI Y M, DING H J, LIU S B. A rotation mode of crop and grass in desert grassland area and high-efficient cultivation technique of herbage. Animal Husbandry and Feed Science, 2019, 40(8): 47-49. (in Chinese)
[82] 宋丽萍. 黄土高原草田轮作系统田间水分蒸散特性及土壤水分恢复效应研究[D]. 兰州: 甘肃农业大学, 2016.
SONG L P. The characteristics of evapotranspiration and soil water recharging in lucerne-crop rotation on the Loess Plateau[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese)
[83] TANG J Z, WANG J, FANG Q X, DAYANANDA B, YU Q, ZHAO P Y, YIN H, PAN X B. Identifying agronomic options for better potato production and conserving water resources in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 2019, 272/273: 91-101.
doi: 10.1016/j.agrformet.2019.04.001
[84] 彭永生, 苏里坦. 全生育期作物水分生产函数的建立--以水稻为例. 干旱区资源与环境, 2003, 17(4): 122-124.
PENG Y S, SU L T. The establishment of water-production function during crops’ full-bearing period. Journal of Arid Land Resources and Environment, 2003, 17(4): 122-124. (in Chinese)
[85] 李陆泗. 作物的水分生产函数. 灌溉排水, 1989(3): 43-45.
LI L S. Water production function of crops. Journal of Irrigation 1989(3): 43-45. (in Chinese)
[86] OSWALÂ M C. Water production functions of dryland crops on aridisols. Journal of the Indian Society of Soil Science, 1995, 43(3): 320-322.
[87] 冯绍元, 罗遵兰, 左海萍. 河北省冬小麦水分生产函数模型初步分析. 灌溉排水学报, 2005, 24(4): 58-61.
FENG S Y, LUO Z L, ZUO H P. The study of water product function of winter wheat in Hebei province. Journal of Irrigation and Drainage, 2005, 24(4): 58-61. (in Chinese)
[11] 杜建民, 王峰, 左忠, 郭永忠, 刘华, 李海洋. 旱地马铃薯根际补灌栽培最佳补灌时期及适宜补灌量研究. 干旱地区农业研究, 2009, 27(2): 129-132.
DU J M, WANG F, ZUO Z, GUO Y Z, LIU H, LI H Y. Study on period and appropriate amount of rhizosphere complementary irrigation for potato in arid area. Agricultural Research in the Arid Areas, 2009, 27(2): 129-132. (in Chinese)
[12] 李瑞, 樊明寿, 郑海春, 郜翻身, 高娃, 王伟妮, 赵晓梅. 基于产量水平的内蒙古阴山地区马铃薯施肥评价. 中国土壤与肥料, 2020(6): 181-188.
LI R, FAN M S, ZHENG H C, GAO F S, GAO W, WANG W N, ZHAO X M. Evaluation of potato fertilization based on yield level in Yinshan region of Inner Mongolia. Soil and Fertilizer Sciences in China, 2020(6): 181-188. (in Chinese)
[13] TANG J Z, WANG J, FANG Q X, WANG E L, YIN H, PAN X B. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 2018, 98: 82-94.
doi: 10.1016/j.eja.2018.05.008
[14] ZHANG Y, ZHANG L Z, YANG N, HUTH N, WANG E L, VAN DER WERF W, EVERS J B, WANG Q, ZHANG D S, WANG R N, GAO H, ANTEN N P. Optimized sowing time windows mitigate climate risks for oats production under cool semi-arid growing conditions. Agricultural and Forest Meteorology, 2019, 266-267: 184-197.
doi: 10.1016/j.agrformet.2018.12.019
[15] 李扬, 王靖, 唐建昭, 黄明霞, 白慧卿, 王娜, 贺付伟. 播期和品种变化对马铃薯产量的耦合效应. 中国生态农业学报, 2019, 27(2): 296-304.
LI Y, WANG J, TANG J Z, HUANG M X, BAI H Q, WANG N, HE F W. Coupling impacts of planting date and cultivar on potato yield. Chinese Journal of Eco-Agriculture, 2019, 27(2): 296-304. (in Chinese)
[16] 黄明霞, 王靖, 唐建昭, 房全孝, 张建平, 白慧卿, 王娜, 李扬, 吴冰洁, 郑隽卿, 潘学标. 基于APSIM模型分析播期和水氮耦合对油葵产量的影响. 农业工程学报, 2018, 34(13): 134-143.
HUANG M X, WANG J, TANG J Z, FANG Q X, ZHANG J P, BAI H Q, WANG N, LI Y, WU B J, ZHEN J Q, PAN X B. Analysis of interaction of sowing date, irrigation and nitrogen application on yield of oil sunflower based on APSIM model. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(13): 134-143. (in Chinese)
[17] 潘学标, 龙步菊, 魏玉荣. 内蒙古黄土高原区降水规律与集雨利用潜力分析. 干旱区资源与环境, 2007, 21(4): 65-71.
PAN X B, LONG B J, WEI Y R. Analysis on the rainfall regular and potential of collecting and utilizing rain in Loess Plateau of Inner Mongolia. Jurnal of Arid Land Resources and Environment, 2007, 21(4): 65-71. (in Chinese)
[18] 马凯, 徐玉霞, 何文鑫, 马佳俊, 陈倩. 内蒙古东部地区主要粮食作物种植适宜性评价及区划. 宝鸡文理学院学报(自然科学版), 2020, 40(1): 72-77+84.
MA K, XU Y X, HE W X, MA J J, CHEN Q. Suitability evaluation and regionalization of main food crops in eastern Inner Mongolia, China. Journal of Baoji University of Arts and Sciences (Natural Science Edition), 2020, 40(1): 72-77+84. (in Chinese)
[19] 段玉, 妥德宝, 赵沛义, 李焕春, 张君. 阴山北麓旱作区主要作物热能值及结构调整研究. 干旱区资源与环境, 2013, 27(8): 153-157.
DUAN Y, TUO D B, ZHAO P Y, LI H C, ZHANG J. Crops caloric value and adjustment of planting structure in rainfed farmland of north Yinshan Mountian area, Inner Mongolia. Journal of Arid Land Resources and Environment, 2013, 27(8): 153-157. (in Chinese)
[20] 王芳. 内蒙古主要粮食作物的区域布局研究. 内蒙古统计, 2015(6): 17-18.
WANG F. Study on the regional layout of main grain crops in Inner Mongolia. Inner Mongolia Statistics, 2015(6): 17-18. (in Chinese)
[21] 王美莲. 内蒙古自治区主要粮食作物生态经济适应性的研究[D]. 呼和浩特: 内蒙古农业大学, 2003.
WANG M L. Study on the ecology-economic adaptability of main crops in Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2003. (in Chinese)
[22] 李艳, 薛昌颖, 杨晓光, 王靖, 刘园, WANG E L. 基于APSIM模型的灌溉降低冬小麦产量风险研究. 农业工程学报, 2009, 25(10): 35-44.
LI Y, XUE C Y, YANG X G, WANG J, LIU Y, WANG E L. Reduction of yield risk of winter wheat by appropriate irrigation based on APSIM model. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(10): 35-44. (in Chinese)
[23] 冯仰强, 聂志刚, 王钧, 罗荣鑫. 基于APSIM模型研究不同降水年型下降水变化对旱地小麦产量的影响. 作物研究, 2021, 35(2): 108-111, 140.
FENG Y Q, NIE Z G, WANG J, LUO R X. Based on APSIM model to study the influence of different precipitation years on the yield of dryland wheat. Crop Research, 2021, 35(2): 108-111, 140. (in Chinese)
[24] 赵彦茜, 肖登攀, 齐永青, 柏会子. 华北平原不同降水年型和作物种植模式下的产量和耗水模拟. 农业工程学报, 2018, 34(20): 108-116.
ZHAO Y Q, XIAO D P, QI Y Q, BAI H Z. Crop yield and water consumption of different cropping patterns under different precipitation years in North China Plain. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 108-116. (in Chinese)
[25] 侯智惠, 梅连杰, 侯安宏, 高晓霞. 内蒙古农业资源配置效率分析. 中国农业资源与区划, 2014, 35(3): 71-77.
HOU Z H, MEI L J, HOU A H, GAO X X. Analysis of allocation efficiency of agriculture resources in Inner Mongolia. Chinese Journal of Agricultural Resources and Regional Planning, 2014, 35(3): 71-77. (in Chinese)
[26] 白美兰, 郝润全, 高建峰, 刘宏伟. 内蒙古地区极端气候事件分布特征及对农业影响评估. 干旱地区农业研究, 2009, 27(2): 21-27.
BAI M L, HAO R Q, GAO J F, LIU H W. Distribution character of extreme climatic events and evaluation of its influence on agriculture in Inner Mongolia. Agricultural Research in the Arid Areas, 2009, 27(2): 21-27. (in Chinese)
[27] 王迎男, 高娃, 郜翻身, 朴明姬, 樊明寿, 贾立国, 柳昱, 郑海春. 内蒙古马铃薯主产区基础地力及增产潜力研究. 植物营养与肥料学报, 2019, 25(8): 1345-1353.
WANG Y N, GAO W, GAO F S, PU M J, FAN M S, JIA L G, LIU Y, ZHEN H C. Inherent soil productivity and yield-increasing potential of potato in main production areas in Inner Mongolia. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1345-1353. (in Chinese)
[28] WANG J, WANG E L, YIN H, FENG L P, ZHAO Y X. Differences between observed and calculated solar radiations and their impact on simulated crop yields. Field Crops Research, 2015, 176: 1-10.
doi: 10.1016/j.fcr.2015.02.014
[29] KEATING B A, CARBERRY P S, HAMMER G L, PROBERT M E, ROBERTSON M J, HOLZWORTH D, HUTH N I, HARGREAVES J N G, MEINKE H, HOCHMAN Z, MCLEAN G, VERBURG K, SNOW V, DIMES J P, SILBURN M, WANG E, BROWN S, BRISTOW K L, ASSENG S, CHAPMAN S, MCCOWN R L, FREEBAIRN D M, SMITH C J. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 2003, 18(3): 267-288.
doi: 10.1016/S1161-0301(02)00108-9
[30] ROBERTSON M J, LILLEY J M. Simulation of growth, development and yield of canola (Brassica napus) in APSIM. Crop Pasture Science, 2016, 67(3): 332-344.
doi: 10.1071/CP15267
[31] WANG N, WANG J, WANG E L, YU Q, SHI Y, HE D. Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming. European Journal of Agronomy, 2015, 71: 19-33.
doi: 10.1016/j.eja.2015.08.005
[32] HUANG M X, WANG J, WANG B, LIU D L, YU Q, HE D, WANG N, PAN X B. Optimizing sowing window and cultivar choice can boost China's maize yield under 1.5°C and 2°C global warming. Environmental Research Letters, 2020, 15(2): 1-8.
[33] HE D, WANG E L, WANG J, LILLEY J M. Genotype x environment x management interactions of canola across China: A simulation study. Agricultural and Forest Meteorology, 2017, 247: 424-433.
doi: 10.1016/j.agrformet.2017.08.027
[34] 黄明霞. 基于APSIM模型的北方农牧交错带向日葵增产空间及途径研究[D]. 北京: 中国农业大学, 2017.
HUANG M X. A study on the yield increasing space and approaches of sunflower in the agro-pastoral ecotone in North China based on APSIM model[D]. Beijing: China Agricultural University, 2017. (in Chinese)
[35] 薛庆禹, 王靖, 曹秀萍, 马薇, 冯利平. 不同播期对华北平原夏玉米生长发育的影响. 中国农业大学学报, 2012, 17(5): 30-38.
XUE Q Y, WANG J, CAO X P, MA W, FENG L P. Effect of sowing date and variety on growth and population characteristics of summer maize in North China Plain. Journal of China Agricultural University, 2012, 17(5): 30-38. (in Chinese)
[36] 胡树平, 青格尔, 高聚林, 侯昆仑. 播期对不同品种春玉米生长发育和产量形成的影响. 内蒙古农业科技, 2015, 43(1): 1-5, 31.
HU S P, QING G E, GAO J L, HOU K L. The effects of sowing on the growth and yield of different hybrids of spring maize. Inner Mongolia Agricultural Science and Technology, 2015, 43(1): 1-5, 31. (in Chinese)
[37] 邓浩亮. 黄土高原不同生态区垄沟覆盖对春玉米生产力和土壤质量的影响及其机理[D]. 兰州: 甘肃农业大学, 2019.
DENG H L. Effects of ridge and furrow mulching on spring maize (Zea mays L.) productivity and soil quality and its mechanism in different ecological regions of the Loess Plateau[D]. Lanzhou: Gansu Agricultural University, 2019. (in Chinese)
[38] 于胜男, 高聚林, 明博, 王振, 于晓芳, 孙继颖, 梁红伟, 王志刚. 北方春玉米粒收品种阶段生长发育与温度因子的关系. 北方农业学报, 2021, 49(4): 35-44.
YU S N, GAO J L, MING B, WANG Z, YU X F, SUN J Y, LIANG H W, WANG Z G. The relationship between growth, development and temperature factors of mechanical grain harvesting spring maize in northern China. Journal of Northern Agriculture, 2021, 49(4): 35-44. (in Chinese)
[39] LI Y, WANG J, TANG J Z, WANG E L, PAN Z H, PAN X B, HU Q. Optimum planting date and cultivar maturity to optimize potato yield and yield stability in North China. Field Crops Research, 2021, 269: 108179.
doi: 10.1016/j.fcr.2021.108179
[40] 张君. 阴山北麓马铃薯水氮耦合效应及合理利用机制研究[D]. 北京: 中国农业大学, 2018.
ZHANG J. The coupling effects of water and fertilizer and its rational utilization mechanism on potato in the Northern Foot of Yinshan Mountain[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[41] 付蓉. 春油菜区绿肥替代氮肥的效应及潜力研究[D]. 杨凌: 西北农林科技大学, 2020.
FU R. Effects and potential of nitrogen fertilizer replacement by green manure in spring rapeseed area[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
[42] 潘宇鹰. 北方农牧交错带向日葵田间集雨模式效应研究--以武川县为例[D]. 北京: 中国农业大学, 2015.
PAN Y Y. Study on effects of rainwater collection models in sunflower field in agricultural and pastoral ecotone in north China-A case study in Wuchuan County[D]. Beijing: China Agricultural University, 2015. (in Chinese)
[43] 韩毅强, 高亚梅, 郑殿峰, 杜吉到. 利用播期研究气候条件对黑龙江春玉米产量性状的影响. 干旱地区农业研究, 2016, 34(3): 132-138.
HAN Y Q, GAO Y M, ZHEN D F, DU J D. Effects of meteorological factors on yield traits of maize (Zea mays L.) in Heilongjiang during various sowing seasons. Agricultural Research in the Arid Areas, 2016, 34(3): 132-138. (in Chinese)
[44] 房磊. 不同垄距与播种深度对马铃薯质量的影响[D]. 北京: 中国农业科学院, 2013.
FANG L. Effects of different row spacing and planting depth on potato quality[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[45] 杨宁. 内蒙古农牧交错带主要作物对气候的敏感性与适应弹性研究[D]. 北京: 中国农业大学, 2014.
YANG N. Climate sensitivity and adaptation flexibility for five dominant crops in Agro-pastoral ecotone in Inner Mongolia[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[46] 董朝阳, 刘志娟, 杨晓光. 北方地区不同等级干旱对春玉米产量影响. 农业工程学报, 2015, 31(11): 157-164.
DONG C Y, LIU Z J, YANG X G. Effects of different grade drought on grain yield of spring maize in Northern China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 157-164. (in Chinese)
[47] 邓国卫, 卿清涛, 徐金霞, 孙俊. 四川省水稻综合气象灾害风险区划. 中国生态农业学报, 2020, 28(5): 621-630.
DE G W, QING Q T, XU J X, SUN J. Integrated meteorological disaster risk regionalization of rice in Sichuan Province. Chinese Journal of Eco-Agriculture, 2020, 28(5): 621-630. (in Chinese)
[48] 孙爽, 杨晓光, 张镇涛, 赵锦, 刘志娟. 华北平原不同等级干旱对冬小麦产量的影响. 农业工程学报, 2021, 37(14): 69-78.
SUN S, YANG X G, ZHANG Z T, ZHAO J, LIU Z J. Impacts of different grades of drought on winter wheat yield in North China Plain. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 69-78. (in Chinese)
[49] 杨霏云, 郑秋红, 李文科, 王琦, 罗蒋梅, 樊栋樑. 基于WOFOST模型的辽宁省春玉米干旱灾损风险评估. 干旱地区农业研究, 2020, 38(6): 218-225.
YANG F Y, ZHENG Q H, LI W K, WANG Q, LUO J M, FAN D L. Risk assessment of drought damage of spring maize in Liaoning Province based on WOFOST model. Agricultural Research in the Arid Areas, 2020, 38(6): 218-225. (in Chinese)
[50] 雷娟娟. 旱地小麦产量形成对降水响应的模拟分析[D]. 兰州: 甘肃农业大学, 2015.
LEI J J. The simulation analysis of wheat yield forming to response of precipitation[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese)
[51] 唐建昭. 北方农牧交错带马铃薯基于缩差和增效的种植管理模式研究[D]. 北京: 中国农业大学, 2018.
TANG J Z. A study on planting pattern of potato to narrow yield gap and increase precipitation use efficiency in the agro-pastoral ecotone in North China[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[52] 张恒嘉. 几种大田作物水分-产量模型及其应用. 中国生态农业学报, 2009, 17(5): 997-1001.
doi: 10.3724/SP.J.1011.2009.00997
ZHANG H J. Field crop water-yield models and their applications. Chinese Journal of Eco-Agriculture, 2009, 17(5): 997-1001. (in Chinese)
doi: 10.3724/SP.J.1011.2009.00997
[53] PRIESTLEY C H B, TAYLOR R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 1972, 100: 81-92.
[54] WANG J, WANG E L, LUO Q Y, KIRBY M. Modelling the sensitivity of wheat growth and water balance to climate change in Southeast Australia. Climatic Change, 2009, 96(1): 79-96.
doi: 10.1007/s10584-009-9599-x
[55] WANG N, WANG E L, WANG J, ZHANG J P, ZHENG B Y, HUANG Y. Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agricultural and Forest Meteorology, 2018, 250/251: 319-329.
doi: 10.1016/j.agrformet.2018.01.005
[56] 王海梅. 高温胁迫对河套灌区玉米生理指标及产量构成要素的影响. 干旱气象, 2015, 33(1): 59-62.
WANG H M. Influence of high temperature stress on physiological indexes and yield components of maize in Hetao Irrigation District. Arid Meteorology, 2015, 33(1): 59-62. (in Chinese)
[57] 巴特尔, 徐桂梅, 付志强, 张凤英, 田小龙. 察右中旗马铃薯种植的气候条件分析与区划. 内蒙古气象, 2009(4): 30-32.
BA T E, XU G M, FU Z Q, ZHANG F Y, TIAN X L. Climatic condition analysis and division of potato planting in Chayouzhong County. Meteorology Journal of Inner Mongolia, 2009(4): 30-32. (in Chinese)
[58] 潘学标, 苟诗薇, 魏玉蓉, 龙步菊. 气候变异对内蒙古武川县麦类作物产量的影响. 中国农学通报, 2007, 23(8): 526-531.
PAN X B, GOU S W, WEI Y R, LONG B J. Impact of climate variation on the yield of crop in Wuchuan County of Inner Mongolia Agro-Pastoral. Chinese Agricultural Science Bulletin, 2007, 23(8): 526-531. (in Chinese)
[59] 董关水, 朱家昌. 旱作莜麦的气象条件及适宜种植区. 中国农业气象, 1994, 15(4): 5-8.
[1] LI XingXing, ZHOU GuoFu, LUO GuanYu, CHEN SiRong, ZHANG JinLong, CHEN GuoHua, ZHANG XiaoMing. Selection Preference and Adaptability of Bactrocera dorsalis to Different Varieties of Malus pumila [J]. Scientia Agricultura Sinica, 2023, 56(17): 3358-3371.
[2] CHEN ZhiMin, CHEN XiaoLin, TAN ZhenHua, CHEN ZhaoXing, SHEN DanDan, MA YanYan, ZHENG YongQiang, YI ShiLai, LÜ Qiang, XIE RangJin. Comprehensive Fruit Quality Evaluation and Suitable Areas Selection of Newhall Navel Orange in China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1949-1965.
[3] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[4] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[5] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[6] LI Xing-mao, NI Sheng-li. Agronomic and Physiological Characterization of the Wide Adaptable Wheat Cultivar Zhongmai 175 Under Two Different Irrigation Conditions [J]. Scientia Agricultura Sinica, 2015, 48(21): 4374-4380.
[7] QIN Jun, YANG Chun-Yan, GU Feng, ZHANG Yao-Bin, FENG Yan, TANG Xiao-Dong, LIU Chang-You, ZHANG Meng-Chen. Evaluation of Productivity and Stability of Soybean Cultivars in China’s Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2013, 46(3): 451-462.
[8] SUN Wei,CHANG Hong,YANG Zhang-ping,MA Yue-hui,GUAN Wei-jun,CHU Ming-xing,TSUNODA Ken-ji,WU Wen-zhong,CHEN Ling,QIAN Jian-gong
. Detection of Genetic Co-Adaptability of Chinese Local Sheep Breeds and Comparison with Their Closely Related Species-Goat
[J]. Scientia Agricultura Sinica, 2010, 43(23): 4917-4927 .
[9] Fang Lei,GuiFen Zhang,FangHao Wan,Jun Ma. Effects of Plant Species Switching on Contents and Dynamics of Trehalose and Trehalase Activity of Bemisia tabaci B-biotype and Trialeurodes vaporariorum [J]. Scientia Agricultura Sinica, 2006, 39(7): 1387-1394 .
[10] ,. Structural adaptability of yak lung [J]. Scientia Agricultura Sinica, 2006, 39(10): 2107-2113 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!