Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3331-3342.doi: 10.3864/j.issn.0578-1752.2021.15.016
• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles Next Articles
DU Xing(),ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa()
[1] |
VOLLENHOVEN B, HUNT S. Ovarian ageing and the impact on female fertility. F1000Research, 2018, 7:1835.
doi: 10.12688/f1000research |
[2] |
SHEN M, JIANG Y, GUAN Z, CAO Y, LI L, LIU H, SUN S C. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy, 2017, 13(8):1364-1385.
doi: 10.1080/15548627.2017.1327941 |
[3] |
LEE S, KOPP F, CHANG T C, SATALURI A, CHEN B, SIVAKUMAR S, YU H, XIE Y, MENDELL J T. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell, 2016, 164(1/2):69-80.
doi: 10.1016/j.cell.2015.12.017 |
[4] |
AGIRRE X, MEYDAN C, JIANG Y, GARATE L, DOANE A S, LI Z, VERMA A, PAIVA B, MARTIN-SUBERO J I, ELEMENTO O, MASON C E, PROSPER F, MELNICK A. Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response. Nature Communications, 2019, 10(1):821.
doi: 10.1038/s41467-019-08679-z |
[5] |
STOJIC L, LUN A T L, MASCALCHI P, ERNST C, REDMOND A M, MANGEI J, BARR A R, BOUSGOUNI V, BAKAL C, MARIONI J C, ODOM D T, GERGELY F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nature Communications, 2020, 11(1):1851.
doi: 10.1038/s41467-020-14978-7 |
[6] |
QIN W, LI X, XIE L, LI S, LIU J, JIA L, DONG X, REN X, XIAO J, YANG C, ZHOU Y, CHEN Z. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Research, 2016, 44(13):6423-6433.
doi: 10.1093/nar/gkw341 |
[7] |
YOU B H, YOON S H, NAM J W. High-confidence coding and noncoding transcriptome maps. Genome Research, 2017, 27(6):1050-1062.
doi: 10.1101/gr.214288.116 |
[8] | GIL N, ULITSKY I. Regulation of gene expression by cis-acting long non-coding RNAs. Nature Reviews. Genetics, 2020, 21(2):102-117. |
[9] |
NAKAGAWA S, SHIMADA M, YANAKA K, MITO M, ARAI T, TAKAHASHI E, FUJITA Y, FUJIMORI T, STANDAERT L, MARINE J C, HIROSE T. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development, 2014, 141(23):4618-4627.
doi: 10.1242/dev.110544 |
[10] |
CHEN Y, WANG J, FAN Y, QIN C, XIA X, JOHNSON J, KALLEN A N. Absence of the long noncoding RNA H19 results in aberrant ovarian STAR and progesterone production. Molecular and Cellular Endocrinology, 2019, 490:15-20.
doi: 10.1016/j.mce.2019.03.009 |
[11] |
ZHAO J, XU J, WANG W, ZHAO H, LIU H, LIU X, LIU J, SUN Y, DUNAIF A, DU Y, CHEN Z J. Long non-coding RNA LINC-01572:28 inhibits granulosa cell growth via a decrease in p27 (Kip1) degradation in patients with polycystic ovary syndrome. EBioMedicine, 2018, 36:526-538.
doi: 10.1016/j.ebiom.2018.09.043 |
[12] |
LI Y, LIU Y D, CHEN S L, CHEN X, YE D S, ZHOU X Y, ZHE J, ZHANG J. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Molecular Human Reproduction, 2019, 25(1):17-29.
doi: 10.1093/molehr/gay045 |
[13] |
DU X, LIU L, LI Q, ZHANG L, PAN Z. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Communications Biology, 2020, 3(1):131.
doi: 10.1038/s42003-020-0864-x |
[14] | FORNES O, CASTRO-MONDRAGON J A, KHAN A, VAN DER LEE R, ZHANG X, RICHMOND P A, MODI B P, CORREARD S, GHEORGHE M, BARANASIC D, SANTANA-GARCIA W, TAN G, CHENEBY J, BALLESTER B, PARCY F, SANDELIN A, LENHARD B, WASSERMAN W W, MATHELIER A. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 2020, 48(D1):D87-D92. |
[15] | DU X, LI Q, YANG L, LIU L, CAO Q. SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death & Disease, 2020, 11(5):373. |
[16] |
LI Q, DU X, LIU L, PAN Z, CAO S. MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene, 2019, 711:143953.
doi: 10.1016/j.gene.2019.143953 |
[17] |
SHEN M, LIN F, ZHANG J, TANG Y, CHEN W K, LIU H. Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. The Journal of Biological Chemistry, 2012, 287(31):25727-25740.
doi: 10.1074/jbc.M112.349902 |
[18] |
LIN F, LI R, PAN Z X, ZHOU B, YU D B, WANG X G, MA X S, HAN J, SHEN M, LIU H L. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE, 2012, 7(6):e38640.
doi: 10.1371/journal.pone.0038640 |
[19] |
REGAN S L P, KNIGHT P G, YOVICH J L, LEUNG Y, ARFUSO F, DHARMARAJAN A. Granulosa cell apoptosis in the ovarian follicle-A changing view. Frontiers in Endocrinology, 2018, 9:61.
doi: 10.3389/fendo.2018.00061 |
[20] |
WANG Y, YANG C, ELSHEIKH N A H, LI C, YANG F, WANG G, LI L. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging, 2019, 11(15):5535-5547.
doi: 10.18632/aging.v11i15 |
[21] |
SPEARS N, LOPES F, STEFANSDOTTIR A, ROSSI V, DE FELICI M, ANDERSON R A, KLINGER F G. Ovarian damage from chemotherapy and current approaches to its protection. Human Reproduction Update, 2019, 25(6):673-693.
doi: 10.1093/humupd/dmz027 |
[22] |
CHU Y L, XU Y R, YANG W X, SUN Y. The role of FSH and TGF-beta superfamily in follicle atresia. Aging, 2018, 10(3):305-321.
doi: 10.18632/aging.v10i3 |
[23] |
LI Q, DU X, PAN Z, ZHANG L. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Molecular and Cellular Endocrinology, 2018, 476:84-95.
doi: 10.1016/j.mce.2018.04.012 |
[24] | DU X, PAN Z, LI Q, LIU H. SMAD4 feedback regulates the canonical TGF-beta signaling pathway to control granulosa cell apoptosis. Cell Death & Disease, 2018, 9(2):151. |
[25] | GUO T, ZHANG J, YAO W, DU X, LI Q, HUANG L, MA M, LIU H, PAN Z. CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles. Biochimica et Biophysica Acta- Gene Regulatory Mechanisms, 2019, 1862(10):194420. |
[26] |
CABILI M N, TRAPNELL C, GOFF L, KOZIOL M, TAZON-VEGA B, REGEV A, RINN J L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 2011, 25(18):1915-1927.
doi: 10.1101/gad.17446611 |
[27] |
QIAN X, ZHAO J, YEUNG P Y, ZHANG Q C, KWOK C K. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends in Biochemical Sciences, 2019, 44(1):33-52.
doi: 10.1016/j.tibs.2018.09.012 |
[28] |
GUTTMAN M, AMIT I, GARBER M, FRENCH C, LIN M F, FELDSER D, HUARTE M, ZUK O, CAREY B W, CASSADY J P, CABILI M N, JAENISCH R, MIKKELSEN T S, JACKS T, HACOHEN N, BERNSTEIN B E, KELLIS M, REGEV A, RINN J L, LANDER E S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235):223-227.
doi: 10.1038/nature07672 |
[29] |
MATTIOLI K, VOLDERS P J, GERHARDINGER C, LEE J C, MAASS P G, MELE M, RINN J L. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Research, 2019, 29(3):344-355.
doi: 10.1101/gr.242222.118 |
[30] |
LIU Y, YANG Y, LI W, AO H, ZHANG Y, ZHOU R, LI K. Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. Journal of Pineal Research, 2019, 66(2):e12546.
doi: 10.1111/jpi.2019.66.issue-2 |
[31] | LIU J, LI X, YAO Y, LI Q, PAN Z. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochimica et Biophysica Acta- Gene Regulatory Mechanisms, 2018, 1861(3):246-257. |
[32] |
CASARINI L, RICCETTI L, DE PASCALI F, GILIOLI L, MARINO M, VECCHI E, MORINI D, NICOLI A, LA SALA G B, SIMONI M. Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro. International Journal of Molecular Sciences, 2017, 18(5):926.
doi: 10.3390/ijms18050926 |
[33] |
QUIRK S M, COWAN R G, HARMAN R M. The susceptibility of granulosa cells to apoptosis is influenced by oestradiol and the cell cycle. The Journal of Endocrinology, 2006, 189(3):441-453.
doi: 10.1677/joe.1.06549 |
[34] |
VUONG N H, COOK D P, FORREST L A, CARTER L E, ROBINEAU-CHARETTE P, KOFSKY J M, HODGKINSON K M, VANDERHYDEN B C. Single-cell RNA-sequencing reveals transcriptional dynamics of estrogen-induced dysplasia in the ovarian surface epithelium. PLoS Genetics, 2018, 14(11):e1007788.
doi: 10.1371/journal.pgen.1007788 |
[35] |
WEI C, GUO D, LI Y, ZHANG K, LIANG G, MA Y, LIU J. Profiling analysis of 17beta-estradiol-regulated lncRNAs in mouse thymic epithelial cells. Physiological Genomics, 2018, 50(8):553-562.
doi: 10.1152/physiolgenomics.00098.2017 |
[36] |
LIU X L, WU R Y, SUN X F, CHENG S F, ZHANG R Q, ZHANG T Y, ZHANG X F, ZHAO Y, SHEN W, LI L. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. International Journal of Biological Sciences, 2018, 14(3):294-305.
doi: 10.7150/ijbs.23898 |
[37] |
CHOI H, ROH J. Role of Klf4 in the regulation of apoptosis and cell cycle in rat granulosa cells during the periovulatory period. International Journal of Molecular Sciences, 2018, 20(1):87.
doi: 10.3390/ijms20010087 |
[38] |
XU L, SUN H, ZHANG M, JIANG Y, ZHANG C, ZHOU J, DING L, HU Y, YAN G. MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Kruppel-like factor 4. Molecular and Cellular Endocrinology, 2017, 452:138-147.
doi: 10.1016/j.mce.2017.05.030 |
[39] |
YADAV H, DEVALARAJA S, CHUNG S T, RANE S G. TGF-beta1/Smad3 pathway targets PP2A-AMPK-FoxO1 signaling to regulate hepatic gluconeogenesis. The Journal of Biological Chemistry, 2017, 292(8):3420-3432.
doi: 10.1074/jbc.M116.764910 |
[40] |
QIAO X, RAO P, ZHANG Y, LIU L, PANG M, WANG H, HU M, TIAN X, ZHANG J, ZHAO Y, WANG X M, WANG C, YU H, GUO F, CAO Q, WANG Y, WANG Y M, ZHANG G Y, LEE V W, ALEXANDER S I, ZHENG G, HARRIS D C H. Redirecting TGF-beta signaling through the Beta-catenin/Foxo complex prevents kidney fibrosis. Journal of the American Society of Nephrology, 2018, 29(2):557-570.
doi: 10.1681/ASN.2016121362 |
[41] | LIU F, QIU H, XUE M, ZHANG S, ZHANG X, XU J, CHEN J, YANG Y, XIE J. MSC-secreted TGF-beta regulates lipopolysaccharide- stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Research & Therapy, 2019, 10(1):345. |
[42] |
SEOANE J, LE H V, SHEN L, ANDERSON S A, MASSAGUE J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 2004, 117(2):211-223.
doi: 10.1016/S0092-8674(04)00298-3 |
[43] |
PONUGOTI B, XU F, ZHANG C, TIAN C, PACIOS S, GRAVES D T. FOXO1 promotes wound healing through the up-regulation of TGF-beta1 and prevention of oxidative stress. The Journal of Cell Biology, 2013, 203(2):327-343.
doi: 10.1083/jcb.201305074 |
[44] |
KURAKAZU I, AKASAKI Y, HAYASHIDA M, TSUSHIMA H, GOTO N, SUEISHI T, TOYA M, KUWAHARA M, OKAZAKI K, DUFFY T, LOTZ M K, NAKASHIMA Y. FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor beta1 signaling. The Journal of Biological Chemistry, 2019, 294(46):17555-17569.
doi: 10.1074/jbc.RA119.009409 |
[1] | WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675. |
[2] | WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276. |
[3] | Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912. |
[4] | XIN XiaoPing, WANG JiaYing, ZHANG AiLing, ZHONG YuYi, HE YingTing, CHEN ZanMou, ZHANG Zhe, ZHANG Hao, LI JiaQi, YUAN XiaoLong. CEBPα and p53 Regulate Kiss1 Gene Expression in Porcine Ovary Granulosa Cells [J]. Scientia Agricultura Sinica, 2019, 52(9): 1624-1634. |
[5] | SUN Gui-Rong, LI Ming, KANG Xiang-Tao, LI Guo-Xi, TIAN Ya-Dong, HAN Rui-Li, BAI Yi-Chun. The Difference Expression Profiles of miR-181a and Transcription Regulation Region Analysis in Chicken [J]. Scientia Agricultura Sinica, 2012, 45(9): 1826-1832. |
[6] | ZHAO Yong-Xiang, LIU Ji-Ying, PAN Zeng-Xiang, ZHANG Jiu-Feng, YAO Yong, ZHOU Ji-Long, XIE Zhuang, XU Yin-Xue, LIU Hong-Lin, LI Qi-Fa. Cloning and mRNA Expression of Smad4 Gene in Ovaries of Erhualian Pig [J]. Scientia Agricultura Sinica, 2012, 45(23): 4883-4890. |
[7] |
HAN Feng-tong,LIN Xiu-kun,LIU Di,WU Ning,LIAO Bing . Identification of the Regulation Sequences of Bovine Sry Promoter [J]. Scientia Agricultura Sinica, 2010, 43(14): 2996-3004 . |
|