Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3331-3342.doi: 10.3864/j.issn.0578-1752.2021.15.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig

DU Xing(),ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa()   

  1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095
  • Received:2020-06-18 Accepted:2020-12-22 Online:2021-08-01 Published:2021-08-10
  • Contact: QiFa LI E-mail:duxing@njau.edu.cn;liqifa@njau.edu.cn

Abstract:

【Objective】 In our previous study, linc-NORFA has been proved as a candidate gene for sow fertility and participated in regulating follicular atresia and granulosa cell apoptosis. The aim of this study is to identify the core promoter of linc-NORFA and investigate its transcriptional regulation in Erhualian pig, so as to provide theoretical basis and new ideas for revealing the mechanism of linc-NORFA regulation to ovarian follicular atresia.【Method】 Ear samples of Euhualian pig were collected for genomic DNA extraction. PCR amplification and clone sequencing were used to obtain the 5’-flanking sequence of Erhualian pig linc-NORFA gene. Reporter vectors construction and luciferase activity assays were performed to identify the core promoter of linc-NORFA gene, and bioinformatic methods were conducted to analyze the characterization of linc-NORFA core promoter and the potential binding elements of transcription factors (TFs). In addition, pig FOXO1 gene eukaryotic expression vector was constructed and Western blot, qRT-PCR, and luciferase activity assays were performed to analyze the effects and regulatory mechanism of FOXO1 overexpression on the transcription of linc-NORFA gene. Besides, chromatin immunoprecipitation (ChIP) assay was performed to identify the interaction between FOXO1 and the core promoter of linc-NORFA in porcine granulosa cells (GCs).【Result】 A total of 1 734 bp 5’-flanking sequence of Erhualian pig linc-NORFA was obtained by PCR amplification and clone sequencing technology, which contained two potential CpG islands. Luciferase activity assay was performed and demonstrated that the core promoter of Erhualian pig linc-NORFA was located at -988 — -684 bp (TSS as +1). Multiple potential binding elements of several transcription factors (TFs) were identified within the core promoter of linc-NORFA using bioinformatic analyses, including ESR2, FOXO1, E2F1, BRCA1 and NFIC. In addition, results from ChIP assay proved that FOXO1 directly binds to the core promoter of linc-NORFA by acting as a transcription factor. Furthermore, It was proved that overexpression of FOXO1 could significantly down-regulate the activity of linc-NORFA core promoter (P<0.01), and also notably inhibited the expression level of linc-NORFA in porcine GCs (P<0.01).【Conclusion】 In this study, the core promoter of Erhualian pig linc-NORFA was identified, and FOXO1 acts as a transcription factor was proved, which significantly inhibited linc-NORFA transcription in porcine GCs through binding and further down-regulating the activity of its core promoter. These findings were of great significance for investigating the molecular mechanism of down-regulation of linc-NORFA during follicular atresia.

Key words: Erhualian pig, ovarian granulosa cells, linc-NORFA, core promoter, transcription regulation

Table 1

Primers used in this study"

引物名称
Primer name
基因
Gene
引物序列
Sequence (5′-3′)
退火温度
Tm (℃)
大小
Size (bp)
用途
Usage
P1 linc-NORFA F: TGGTCCAGGAGGGCAAGC 62.3 637 PCR扩增
PCR Amplification
R: CCCCGTTTGCGTGCTTGT
P2 linc-NORFA F: GGGTTTGTGAGTCCAAAGCAAG 61.9 796
R: GGTTTCCACGTCCCTCGGTAT
P3 linc-NORFA F: TTCCAGAGCCTCCAAAGTGA 58.1 730
R: CCTTTGGGAGACCAGCACA
pNORFA-1F linc-NORFA CCAGCATCGCGTCGTCTTT 61.8 280 载体构建
Vector Construction
pNORFA-2F linc-NORFA TTCCAGAGCCTCCAAAGTGACT 58.8 613
pNORFA-3F linc-NORFA AGGCTGTGCCCAGCGCCTG 59.6 917
pNORFA-4F linc-NORFA GGGTTTGTGAGTCCAAAGCAA 60.2 1232
pNORFA-5F linc-NORFA GGTCGTCATGGAATATGCTCG 60.5 1771
pNORFA-R linc-NORFA CCTCCCAATACGATCTACTTCCTG - -
NORFA-RT linc-NORFA F: ATCCGTTTAGGTCCGTTAGAGC 60.7 117 qRT-PCR
R: GGAGGCTGAGTTTGCCACAA
FOXO1-RT FOXO1 F: GGTCAAGAGCGTGCCCTACT 60.3 173
R: TCCCACTCTTGCCTCCCTCT
GAPDH-RT GAPDH F: GGACTCATGACCACGGTCCAT 60.0 220
R: TCAGATCCACAACCGACACGT
FBE-1 linc-NORFA F:ACCTGTAATCCTGCTGGTGAGA 58.0 258 ChIP
R:CCACCCACAGGTCTTAATCCA
FBE-X linc-NORFA F:ATATGCTCGGTCCTGTGGC 60.0 328
R:CCACCTGTCAACCATCCCT

Fig. 1

Amplification and identification of the 5′-flanking region of Erhualian pig linc-NORFA (A) M: 2 kb DNA marker; P1-P3: PCR amplification products; (B) The 5′-flanking sequence of Erhualian pig linc-NORFA"

Fig. 2

Characterization of the 5′-flanking sequence of Erhualian linc-NORFA (A) Nucleotide composition; (B) Nucleotide percentage; (C) CpG island analysis"

Fig. 3

Identification of the core promoter of linc-NORFA (A) Plasmids construction; (B) Luciferase activity assays"

Fig. 4

Characterization of the core promoter of linc-NORFA (A) The letters with gray shading indicate CG sites and the letters underline indicate binding sites of transcription factor; (B) Bioinformatic analysis for the binding sites of potential transcription factors"

Fig. 5

Construction of the Erhualian pig FOXO1 eukaryotic expression vector (A)Diagram showing the construction of pcDNA3.1-FOXO1;(B)qRT-PCR assay;(C)Western blot assay"

Fig. 6

FOXO1 acts as a transcription factor and inhibits linc-NORFA expression in porcine GCs (A) The effects of FOXO1 overexpression on the expression level of linc-NORFA; (B) The effects of FOXO1 overexpression on the activity of linc-NORFA core promoter; (C) ChIP assay was performed to analyze the enrichment of FOXO1 on the core promoter of linc-NORFA; (D) The effects of H2O2-induced oxidative stress on the expression level of FOXO1;(E) The effects of H2O2-induced oxidative stress on the expression level of linc-NORFA"

[1] VOLLENHOVEN B, HUNT S. Ovarian ageing and the impact on female fertility. F1000Research, 2018, 7:1835.
doi: 10.12688/f1000research
[2] SHEN M, JIANG Y, GUAN Z, CAO Y, LI L, LIU H, SUN S C. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy, 2017, 13(8):1364-1385.
doi: 10.1080/15548627.2017.1327941
[3] LEE S, KOPP F, CHANG T C, SATALURI A, CHEN B, SIVAKUMAR S, YU H, XIE Y, MENDELL J T. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell, 2016, 164(1/2):69-80.
doi: 10.1016/j.cell.2015.12.017
[4] AGIRRE X, MEYDAN C, JIANG Y, GARATE L, DOANE A S, LI Z, VERMA A, PAIVA B, MARTIN-SUBERO J I, ELEMENTO O, MASON C E, PROSPER F, MELNICK A. Long non-coding RNAs discriminate the stages and gene regulatory states of human humoral immune response. Nature Communications, 2019, 10(1):821.
doi: 10.1038/s41467-019-08679-z
[5] STOJIC L, LUN A T L, MASCALCHI P, ERNST C, REDMOND A M, MANGEI J, BARR A R, BOUSGOUNI V, BAKAL C, MARIONI J C, ODOM D T, GERGELY F. A high-content RNAi screen reveals multiple roles for long noncoding RNAs in cell division. Nature Communications, 2020, 11(1):1851.
doi: 10.1038/s41467-020-14978-7
[6] QIN W, LI X, XIE L, LI S, LIU J, JIA L, DONG X, REN X, XIAO J, YANG C, ZHOU Y, CHEN Z. A long non-coding RNA, APOA4-AS, regulates APOA4 expression depending on HuR in mice. Nucleic Acids Research, 2016, 44(13):6423-6433.
doi: 10.1093/nar/gkw341
[7] YOU B H, YOON S H, NAM J W. High-confidence coding and noncoding transcriptome maps. Genome Research, 2017, 27(6):1050-1062.
doi: 10.1101/gr.214288.116
[8] GIL N, ULITSKY I. Regulation of gene expression by cis-acting long non-coding RNAs. Nature Reviews. Genetics, 2020, 21(2):102-117.
[9] NAKAGAWA S, SHIMADA M, YANAKA K, MITO M, ARAI T, TAKAHASHI E, FUJITA Y, FUJIMORI T, STANDAERT L, MARINE J C, HIROSE T. The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development, 2014, 141(23):4618-4627.
doi: 10.1242/dev.110544
[10] CHEN Y, WANG J, FAN Y, QIN C, XIA X, JOHNSON J, KALLEN A N. Absence of the long noncoding RNA H19 results in aberrant ovarian STAR and progesterone production. Molecular and Cellular Endocrinology, 2019, 490:15-20.
doi: 10.1016/j.mce.2019.03.009
[11] ZHAO J, XU J, WANG W, ZHAO H, LIU H, LIU X, LIU J, SUN Y, DUNAIF A, DU Y, CHEN Z J. Long non-coding RNA LINC-01572:28 inhibits granulosa cell growth via a decrease in p27 (Kip1) degradation in patients with polycystic ovary syndrome. EBioMedicine, 2018, 36:526-538.
doi: 10.1016/j.ebiom.2018.09.043
[12] LI Y, LIU Y D, CHEN S L, CHEN X, YE D S, ZHOU X Y, ZHE J, ZHANG J. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Molecular Human Reproduction, 2019, 25(1):17-29.
doi: 10.1093/molehr/gay045
[13] DU X, LIU L, LI Q, ZHANG L, PAN Z. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Communications Biology, 2020, 3(1):131.
doi: 10.1038/s42003-020-0864-x
[14] FORNES O, CASTRO-MONDRAGON J A, KHAN A, VAN DER LEE R, ZHANG X, RICHMOND P A, MODI B P, CORREARD S, GHEORGHE M, BARANASIC D, SANTANA-GARCIA W, TAN G, CHENEBY J, BALLESTER B, PARCY F, SANDELIN A, LENHARD B, WASSERMAN W W, MATHELIER A. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 2020, 48(D1):D87-D92.
[15] DU X, LI Q, YANG L, LIU L, CAO Q. SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death & Disease, 2020, 11(5):373.
[16] LI Q, DU X, LIU L, PAN Z, CAO S. MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene, 2019, 711:143953.
doi: 10.1016/j.gene.2019.143953
[17] SHEN M, LIN F, ZHANG J, TANG Y, CHEN W K, LIU H. Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. The Journal of Biological Chemistry, 2012, 287(31):25727-25740.
doi: 10.1074/jbc.M112.349902
[18] LIN F, LI R, PAN Z X, ZHOU B, YU D B, WANG X G, MA X S, HAN J, SHEN M, LIU H L. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE, 2012, 7(6):e38640.
doi: 10.1371/journal.pone.0038640
[19] REGAN S L P, KNIGHT P G, YOVICH J L, LEUNG Y, ARFUSO F, DHARMARAJAN A. Granulosa cell apoptosis in the ovarian follicle-A changing view. Frontiers in Endocrinology, 2018, 9:61.
doi: 10.3389/fendo.2018.00061
[20] WANG Y, YANG C, ELSHEIKH N A H, LI C, YANG F, WANG G, LI L. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging, 2019, 11(15):5535-5547.
doi: 10.18632/aging.v11i15
[21] SPEARS N, LOPES F, STEFANSDOTTIR A, ROSSI V, DE FELICI M, ANDERSON R A, KLINGER F G. Ovarian damage from chemotherapy and current approaches to its protection. Human Reproduction Update, 2019, 25(6):673-693.
doi: 10.1093/humupd/dmz027
[22] CHU Y L, XU Y R, YANG W X, SUN Y. The role of FSH and TGF-beta superfamily in follicle atresia. Aging, 2018, 10(3):305-321.
doi: 10.18632/aging.v10i3
[23] LI Q, DU X, PAN Z, ZHANG L. The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Molecular and Cellular Endocrinology, 2018, 476:84-95.
doi: 10.1016/j.mce.2018.04.012
[24] DU X, PAN Z, LI Q, LIU H. SMAD4 feedback regulates the canonical TGF-beta signaling pathway to control granulosa cell apoptosis. Cell Death & Disease, 2018, 9(2):151.
[25] GUO T, ZHANG J, YAO W, DU X, LI Q, HUANG L, MA M, LIU H, PAN Z. CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles. Biochimica et Biophysica Acta- Gene Regulatory Mechanisms, 2019, 1862(10):194420.
[26] CABILI M N, TRAPNELL C, GOFF L, KOZIOL M, TAZON-VEGA B, REGEV A, RINN J L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development, 2011, 25(18):1915-1927.
doi: 10.1101/gad.17446611
[27] QIAN X, ZHAO J, YEUNG P Y, ZHANG Q C, KWOK C K. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends in Biochemical Sciences, 2019, 44(1):33-52.
doi: 10.1016/j.tibs.2018.09.012
[28] GUTTMAN M, AMIT I, GARBER M, FRENCH C, LIN M F, FELDSER D, HUARTE M, ZUK O, CAREY B W, CASSADY J P, CABILI M N, JAENISCH R, MIKKELSEN T S, JACKS T, HACOHEN N, BERNSTEIN B E, KELLIS M, REGEV A, RINN J L, LANDER E S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009, 458(7235):223-227.
doi: 10.1038/nature07672
[29] MATTIOLI K, VOLDERS P J, GERHARDINGER C, LEE J C, MAASS P G, MELE M, RINN J L. High-throughput functional analysis of lncRNA core promoters elucidates rules governing tissue specificity. Genome Research, 2019, 29(3):344-355.
doi: 10.1101/gr.242222.118
[30] LIU Y, YANG Y, LI W, AO H, ZHANG Y, ZHOU R, LI K. Effects of melatonin on the synthesis of estradiol and gene expression in pig granulosa cells. Journal of Pineal Research, 2019, 66(2):e12546.
doi: 10.1111/jpi.2019.66.issue-2
[31] LIU J, LI X, YAO Y, LI Q, PAN Z. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochimica et Biophysica Acta- Gene Regulatory Mechanisms, 2018, 1861(3):246-257.
[32] CASARINI L, RICCETTI L, DE PASCALI F, GILIOLI L, MARINO M, VECCHI E, MORINI D, NICOLI A, LA SALA G B, SIMONI M. Estrogen modulates specific life and death signals induced by LH and hCG in human primary granulosa cells in vitro. International Journal of Molecular Sciences, 2017, 18(5):926.
doi: 10.3390/ijms18050926
[33] QUIRK S M, COWAN R G, HARMAN R M. The susceptibility of granulosa cells to apoptosis is influenced by oestradiol and the cell cycle. The Journal of Endocrinology, 2006, 189(3):441-453.
doi: 10.1677/joe.1.06549
[34] VUONG N H, COOK D P, FORREST L A, CARTER L E, ROBINEAU-CHARETTE P, KOFSKY J M, HODGKINSON K M, VANDERHYDEN B C. Single-cell RNA-sequencing reveals transcriptional dynamics of estrogen-induced dysplasia in the ovarian surface epithelium. PLoS Genetics, 2018, 14(11):e1007788.
doi: 10.1371/journal.pgen.1007788
[35] WEI C, GUO D, LI Y, ZHANG K, LIANG G, MA Y, LIU J. Profiling analysis of 17beta-estradiol-regulated lncRNAs in mouse thymic epithelial cells. Physiological Genomics, 2018, 50(8):553-562.
doi: 10.1152/physiolgenomics.00098.2017
[36] LIU X L, WU R Y, SUN X F, CHENG S F, ZHANG R Q, ZHANG T Y, ZHANG X F, ZHAO Y, SHEN W, LI L. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. International Journal of Biological Sciences, 2018, 14(3):294-305.
doi: 10.7150/ijbs.23898
[37] CHOI H, ROH J. Role of Klf4 in the regulation of apoptosis and cell cycle in rat granulosa cells during the periovulatory period. International Journal of Molecular Sciences, 2018, 20(1):87.
doi: 10.3390/ijms20010087
[38] XU L, SUN H, ZHANG M, JIANG Y, ZHANG C, ZHOU J, DING L, HU Y, YAN G. MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Kruppel-like factor 4. Molecular and Cellular Endocrinology, 2017, 452:138-147.
doi: 10.1016/j.mce.2017.05.030
[39] YADAV H, DEVALARAJA S, CHUNG S T, RANE S G. TGF-beta1/Smad3 pathway targets PP2A-AMPK-FoxO1 signaling to regulate hepatic gluconeogenesis. The Journal of Biological Chemistry, 2017, 292(8):3420-3432.
doi: 10.1074/jbc.M116.764910
[40] QIAO X, RAO P, ZHANG Y, LIU L, PANG M, WANG H, HU M, TIAN X, ZHANG J, ZHAO Y, WANG X M, WANG C, YU H, GUO F, CAO Q, WANG Y, WANG Y M, ZHANG G Y, LEE V W, ALEXANDER S I, ZHENG G, HARRIS D C H. Redirecting TGF-beta signaling through the Beta-catenin/Foxo complex prevents kidney fibrosis. Journal of the American Society of Nephrology, 2018, 29(2):557-570.
doi: 10.1681/ASN.2016121362
[41] LIU F, QIU H, XUE M, ZHANG S, ZHANG X, XU J, CHEN J, YANG Y, XIE J. MSC-secreted TGF-beta regulates lipopolysaccharide- stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Research & Therapy, 2019, 10(1):345.
[42] SEOANE J, LE H V, SHEN L, ANDERSON S A, MASSAGUE J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 2004, 117(2):211-223.
doi: 10.1016/S0092-8674(04)00298-3
[43] PONUGOTI B, XU F, ZHANG C, TIAN C, PACIOS S, GRAVES D T. FOXO1 promotes wound healing through the up-regulation of TGF-beta1 and prevention of oxidative stress. The Journal of Cell Biology, 2013, 203(2):327-343.
doi: 10.1083/jcb.201305074
[44] KURAKAZU I, AKASAKI Y, HAYASHIDA M, TSUSHIMA H, GOTO N, SUEISHI T, TOYA M, KUWAHARA M, OKAZAKI K, DUFFY T, LOTZ M K, NAKASHIMA Y. FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor beta1 signaling. The Journal of Biological Chemistry, 2019, 294(46):17555-17569.
doi: 10.1074/jbc.RA119.009409
[1] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[2] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[3] Xin ZHANG,KongLin HUO,XingXing SONG,DuoNi ZHANG,Wen HU,ChuanHuo HU,Xun LI. Effects of GnIH on Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells via p38MAPK Signaling Pathway [J]. Scientia Agricultura Sinica, 2020, 53(9): 1904-1912.
[4] XIN XiaoPing, WANG JiaYing, ZHANG AiLing, ZHONG YuYi, HE YingTing, CHEN ZanMou, ZHANG Zhe, ZHANG Hao, LI JiaQi, YUAN XiaoLong. CEBPα and p53 Regulate Kiss1 Gene Expression in Porcine Ovary Granulosa Cells [J]. Scientia Agricultura Sinica, 2019, 52(9): 1624-1634.
[5] SUN Gui-Rong, LI Ming, KANG Xiang-Tao, LI Guo-Xi, TIAN Ya-Dong, HAN Rui-Li, BAI Yi-Chun. The Difference Expression Profiles of miR-181a and Transcription Regulation Region Analysis in Chicken [J]. Scientia Agricultura Sinica, 2012, 45(9): 1826-1832.
[6] ZHAO Yong-Xiang, LIU Ji-Ying, PAN Zeng-Xiang, ZHANG Jiu-Feng, YAO Yong, ZHOU Ji-Long, XIE Zhuang, XU Yin-Xue, LIU Hong-Lin, LI Qi-Fa. Cloning and mRNA Expression of Smad4 Gene in Ovaries of Erhualian Pig [J]. Scientia Agricultura Sinica, 2012, 45(23): 4883-4890.
[7] HAN Feng-tong,LIN Xiu-kun,LIU Di,WU Ning,LIAO Bing
. Identification of the Regulation Sequences of Bovine Sry Promoter
[J]. Scientia Agricultura Sinica, 2010, 43(14): 2996-3004 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!