Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (23): 4883-4890.doi: 10.3864/j.issn.0578-1752.2012.23.015

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Cloning and mRNA Expression of Smad4 Gene in Ovaries of Erhualian Pig

 ZHAO  Yong-Xiang, LIU  Ji-Ying, PAN  Zeng-Xiang, ZHANG  Jiu-Feng, YAO  Yong, ZHOU  Ji-Long, XIE  Zhuang, XU  Yin-Xue, LIU  Hong-Lin, LI  Qi-Fa   

  1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095
  • Received:2012-04-01 Online:2012-12-01 Published:2012-04-28

Abstract: 【Objective】To investigate The sequence features and tissue distribution patterns of Smad4 gene in Erhualian pigs were investigated, and the Smad4 mRNA expression differences in ovarian tissue between Erhualian and commercial cross pigs were analyzed. 【Method】The cDNA sequence of Smad4 gene was obtained by cloning and sequencing techniques in Erhualian pigs, the gene sequence characteristics, physical and chemical properties and the 3D structure of Smad4 protein were analyzed by using bioinformatics methods. The tissue distribution patterns of Smad4 gene were detected by RT-PCR, and then the mRNA expression levels were detected in ovarian tissue of Erhualian and commercial cross pigs by real-time PCR.【Result】The full length of Smad4 gene coding sequence was 1 659 bp in Erhualian pigs, encoding for a protein with 552 amino acid residues. The coding amino acid sequence was highly conservative with other mammals (more than 98% identity). Same as other mammals, Smad4 protein in Erhualian pigs also had three typical structural domains (MH1, SAD and MH2). RT-PCR assays revealed that Smad4 gene of Erhualian pigs widely expressed in all tissues. In addition, Smad4 mRNA levels in Erhualian pig ovary was significantly higher than that in commercial pigs (P<0.01). 【Conclusion】 The Smad4 gene in Erhualian pigs may be own the same function as other mammals and exert probably associated with the pig prolificacy.

Key words: Erhualian pig , Smad4 , ovary tissue , mRNA expression level

[1]姜志华, 朱婉茹, 徐世永, 陈  杰, 黄瑞华, 刘红林, Archibald A L, Haley C S. 太湖猪种质基因特征研究. 南京农业大学学报, 2005, 28(2): 69-74. 

Jiang Z H, Zhu W R, Xu S Y, Chen J, Huang R H, Liu H L, Archibald A L, Haley C S. Molecular germ-plasm characteristics of Taihu pigs. Journal of Nanjing Agricultural University, 2005, 28(2): 69-74. (in Chinese)

[2]Moustakas A, Souchelnytskyi S, Heldin C H. Smad regulation in TGF-β signal transduction. Journal of Cell Science, 2001, 114(24): 4359-4369.

[3]Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S, Cordenonsi M, Piccolo S. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nature Cell Biology, 2011, 13: 1368-1375.

[4]Wang W, Chen X, Li X, Wang L, Zhang H, He Y, Wang J, Zhao Y, Zhang B, Xu Y. Interference RNA-based silencing of endogenous SMAD4 in porcine granulosa cells resulted in decreased FSH-mediated granulosa cells proliferation and steroidogenesis. Reproduction, 2011, 141(5): 643-651.

[5]Pangas S A, Li X, Robertson E J, Matzuk M M. Premature luteinization and cumulus cell defects in ovarian-specific Smad4 knockout mice. Molecular Endocrinology, 2006, 20(6): 1406-1422.

[6]Yao G, Yin M, Lian J, Tian H, Liu L, Li X, Sun F. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Molecular Endocrinology, 2010, 24(3): 540-551.

[7]Pangas S A. Bone morphogenetic protein signaling transcription factor (SMAD) function in granulosa cells. Molecular and Cell Endocrinology, 2011. doi:10.1016/j.mce.2011.06.021

[8]Li X, Tripurani S, James R, Pangas S A. Minimal fertility defects in mice deficient in oocyte-expressed Smad4. Biology of Reproduction, 2011. Doi: 10.1095/biolreprod.111.094375.

[9]Sirard C, de la Pompa J L, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern S E, Rossant J, Mak T W. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes and Development, 1998, 12(1): 107-119.

[10]Yang X, Li C, Xu X, Deng C. The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(7): 3667-3672.

[11]Gueripel X, Brun V, Gougeon A. Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion. Biology of Reproduction, 2006, 75(6): 836-843.

[12]Xu Y, Li E, Han Y, Chen L, Xie Z. Differential expression of mRNAs encoding BMP/Smad pathway molecules in antral follicles of high- and low-fecundity Hu sheep. Animal Reproduction Science, 2010, 120: 47-55.

[13]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.

[14]Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451-1452.

[15]Knight A, Mindell D. Substitutions, weighting of DNA sequence evolution, and the phylogeny position of feaps viper. Systematic Biology, 1993, 42: 18-31.

[16]Zhang Y, Feng X, We R, Derynck R. Receptor-associated mad homologues synergize as effectors of the TGF-beta response. Nature, 1996, 383(6596): 168-172.

[17]Baburajendran N, Jauch R, Tan CY, Narasimhan K, Kolatkar P R. Structural basis for the cooperative DNA recognition by Smad4 MH1 dimers. Nucleic Acids Research, 2011, 39(18): 8213-8222.

[18]Goto K, Kamiya Y, Imamura T, Miyazono K, Miyazawa K. Selective inhibitory effects of Smad6 on bone morphogenetic protein type I receptors. The Journal of Biological Chemistry, 2007, 282(28): 20603-20611.

[19]Kaivo-oja N, Jeffery L A, Ritvos O, Mottershead D G. Smad signalling in the ovary. Reproductive Biology and Endocrinology, 2006, 4: 21-33.

[20]Kaneko S, Chen X, Lu P, Yao X, Wright T G, Rajurkar M, Kariya K, Mao J, Ip Y T, Xu L. Smad inhibition by the Ste20 kinase Misshapen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 11127-11132.

[21]Massagu J, Gomis R R. The logic of TGFbeta signaling. FEBS Letters, 2006, 580(12): 2811-2820.

[22]Hata A, Lagna G, Massague J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes and Development, 1998, 12(2): 186-197.

[23]da Silva S, Hasegawa H, Scott A, Zhou X, Wagner A K, Han B X, Wang F. Proper formation of whisker barrelettes requires periphery-derived Smad4-dependent TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3395-33400

[24]Sirard C, de la Pompa J L, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern S E, Rossant J, Mak T W. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes and Development, 1998, 12(1): 107-119.

[25]Yang G, Yang X. Smad4-mediated TGF-β signaling in tumorigenesis. International Journal of Biological Sciences, 2010, 6(1): 1-8.

[26]Le Goff C, Mahaut C, Abhyankar A, le Goff W, Serre V, Afenjar A, Destrée A, di Rocco M, Héron D, Jacquemont S, Marlin S, Simon M, Tolmie J, Verloes A, Casanova J L, Munnich A, Cormier-Daire V. Mutations at a single codon in mad homology 2 domain of SMAD4 cause Myhre syndrome. Nature Genetics, 2011, 44(1): 85-88.

[27]Li J, Huang X, Xu X, Mayo J, Bringas P, Jiang R, Wang S, Chai Y. SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development, 2011, 138(10): 1977-1989.

[28]Zhang C P, Yang J L, Zhang J, Li L, Huang L, Ji S Y, Hu Z Y, Gao F, Liu Y X. Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation. Endocrinology, 2011, 152(6): 2437-2447.

[29]Yu J, Yaba A, Kasiman C, Thomson T, Johnson J. mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One, 2011, 6(7): e21415.
[1] DU Xing,ZENG Qiang,LIU Lu,LI QiQi,YANG Liu,PAN ZengXiang,LI QiFa. Identification of the Core Promoter of Linc-NORFA and Its Transcriptional Regulation in Erhualian Pig [J]. Scientia Agricultura Sinica, 2021, 54(15): 3331-3342.
[2] LI WenYang,LIU Yuan,WU XianFeng,GAO ChengFang,HUANG QinLou. Transcriptome Analysis of Differentially Gene Expression Associated with Ovary Tissue During the Follicular Stage in Fuqing Goat and Nubian Black Goat [J]. Scientia Agricultura Sinica, 2019, 52(12): 2171-2182.
[3] ZHU Xiang-Zhen, MA Qiao-Ying, ZHANG Shuai, 吕Li-Min , LUO Jun-Yu, WANG Chun-Yi, CUI Jin-Jie. Cloning of a Polyphenol Oxidase Gene (GhPPO1) of Gossypium hirsutum and Its Role in Cotton after Helicoverpa armigera Feeding [J]. Scientia Agricultura Sinica, 2014, 47(16): 3174-3183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!