Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2789-2803.doi: 10.3864/j.issn.0578-1752.2021.13.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw

DONG JianXin1,2(),SONG WenJing2,CONG Ping1,2,LI YuYi1,PANG HuanCheng1(),ZHENG XueBo2,WANG Yi3,WANG Jing1,KUANG Shuai2,XU YanLi2   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong
    3Weifang Tobacco Company of Shandong Province, Weifang 261205, Shandong
  • Received:2020-08-20 Revised:2020-09-28 Online:2021-07-01 Published:2021-07-12
  • Contact: HuanCheng PANG E-mail:dongjianxin@caas.cn;panghuancheng@caas.cn

Abstract:

Abstract: 【Objective】Aiming at the problems of soil physical properties deterioration because of the high input of chemical fertilizer and frequent cultivation, such as soil hardening, permeability reduction and water stable aggregate quantity decrease, the feasibility of improving the above soil physical properties by straw granular fertilizer and cultivation method was discussed. 【Method】Three years of field experiments were carried out with rotary tillage + no straw granular fertilizer (RG0) as the control. The three kinds of straw granular fertilizer (G1: 2 250 kg·hm-2, G2: 4 500 kg·hm-2, G3: 6 750 kg·hm-2) and two tillage methods (rotary tillage: R, deep burying: T) were set, and the effects of straw granular fertilizer and tillage methods on soil bulk density, field water holding capacity, soil porosity and soil aggregate stability were studied. 【Result】The results showed that: (1) Compared with RG0, RG treatment significantly reduced soil bulk density in 0-20 cm soil layer by 6.7%-16.5%, while TG treatment significantly reduced soil bulk density in 20-40 cm soil layer by 3.0%-9.8%. The decrease rate of the high amount of straw granular returning was the highest. (2) RG was more conducive to increase the field water capacity of 0-20 cm soil layer, with RG3 increasing the most significant, up to 14.9%; the amount of straw granule fertilizer significantly affected the field water capacity of 20-40 cm soil layer, and the effect of twice and three times treatment was the most significant. (3) The total porosity of 0-20 cm soil layer was significantly affected by tillage, which was increased up to 17.9% under RG3, while TG3 significantly increased it in 20-40 cm soil layer. RG2 and RG3 could significantly increase the capillary porosity of 20-40 cm soil layer during three years. (4) The stability of soil aggregates in 0-20 cm soil layer was significantly improved under RG treatment in the later stage of returning to the field. What’s more, aggregate size of >2 mm, 小鱼0.106 mm, 0.5-1 mm, 0.106-0.25 mm and 1-2 mm were the important components (Exp>66%) that affected the physical properties of 0-20 cm soil layer, while 0.5-1 mm and 0.106-0.25 mm particle size aggregates were the important components (Exp>48%) that affected the physical properties of 20-40 cm soil layer. 【Conclusion】Treatment of RG3 reduced the soil bulk density, improved the water holding capacity, and promoted the soil aggregates stability of the two soil layers at the same time. Cluster analysis further indicated that the soil physical properties were at the first level treated by RG3. Thus, 6 750 kg·hm-2 of straw granular fertilizer combined with rotary tillage was a feasible measure to improve the physical structure of local tobacco field soil effectively, and also provided technical guidance for the utilization of crop straw.

Key words: granulated straw, tillage management, soil physical properties, aggregate stability

Table 1

Basic physicochemical properties of tested soil"

土层
Soil layer (cm)
pH 有机质
Soil organic matter (g·kg-1)
容重
Soil bulk density (g·cm-3)
田间持水量
Field water capacity (%)
总孔隙度
Soil total porosity (%)
毛管孔隙度
Soil capillary porosity (%)
>0.25 mm水稳性团聚体
>0.25 mm water stable aggregate (%)
0-20 7.89 14.88 1.34 20.89 48.91 27.15 61.98
20-40 8.03 13.79 1.59 17.25 36.28 29.90 70.59

Table 2

Experimental design"

编号No. 试验处理Treatment
RG0 旋耕+秸秆不还田Rotary tillage with no straw return
TG1 深翻(35 cm)+ 秸秆颗粒2 250 kg·hm-2Deep ploughing (35 cm) with granulated straw 2 250 kg·hm-2
TG2 深翻(35 cm)+ 秸秆颗粒4 500 kg·hm-2Deep ploughing (35 cm) with granulated straw 4 500 kg·hm-2
TG3 深翻(35 cm)+ 秸秆颗粒6 750 kg·hm-2Deep ploughing (35 cm) with granulated straw 6 750 kg·hm-2
RG1 旋耕(15 cm)+ 秸秆颗粒2 250 kg·hm-2Rotary tillage (15 cm) with granulated straw 2 250 kg·hm-2
RG2 旋耕(15 cm)+秸秆颗粒4 500 kg·hm-2Rotary tillage (15 cm) with granulated straw 4 500 kg·hm-2
RG3 旋耕(15 cm)+秸秆颗粒6 750 kg·hm-2Rotary tillage (15 cm) with granulated straw 6 750 kg·hm-2

Table 3

Soil bulk density and its decreases under different treatments from 2016 to 2018"

土层
Soil layer (cm)
处理
Treatment
2016 2017 2018
土壤容重
Bulk density (g·cm-3)
土壤容重降低比率
Bulk density decrease (%)
土壤容重
Bulk density (g·cm-3)
土壤容重降低比率
Bulk density decrease (%)
土壤容重
Bulk density (g·cm-3)
土壤容重降低比率
Bulk density decrease (%)
0-20 RG0 1.38±0.05a 1.38±0.02a 1.43±0.03a
TG1 1.39±0.07a -1.01 1.36±0.02a 1.14 1.33±0.02bc 6.70
TG2 1.44±0.02a -4.19 1.25±0.01b 9.78 1.31±0.05bc 8.07
TG3 1.43±0.01a -3.81 1.26±0.02b 8.48 1.32±0.01bc 7.87
RG1 1.34±0.02a 2.56 1.23±0.01b 11.23 1.31±0.01bc 8.70
RG2 1.34±0.01a 2.55 1.22±0.03b 11.30 1.35±0.01b 5.60
RG3 1.35±0.02a 2.28 1.15±0.02c 16.47 1.27±0.01c 11.35
20-40 RG0 1.67±0.02a 1.65±0.01a 1.64±0.01a
TG1 1.57±0.03c 6.05 1.68±0.02a -2.01 1.50±0.02d 8.67
TG2 1.61±0.02bc 3.44 1.55±0.01b 6.11 1.50±0.01d 8.29
TG3 1.58±0.01c 5.48 1.51±0.01c 8.56 1.48±0.01d 9.84
RG1 1.62±0.01bc 3.03 1.56±0.01b 5.64 1.58±0.01b 3.47
RG2 1.64±0.02ab 1.80 1.55±0.01b 5.90 1.57±0.01bc 4.49
RG3 1.61±0.01bc 3.59 1.54±0.01bc 6.40 1.54±0.01c 5.90

Table 4

Two-way ANOVA analysis of the interaction between tillage and pelletized straw amount on soil bulk density"

土层
Soil layer (cm)
年份
Year
耕作方式
Tillage management
秸秆用量
Straw amount
耕作方式×秸秆用量
Tillage management×Straw amount
F P F P F P
0-20 2016 8.08 0.0175 0.30 0.7494 0.25 0.7817
2017 49.38 小鱼0.0001 16.00 0.0008 7.68 0.0095
2018 0.52 0.4887 1.37 0.2974 1.63 0.2438
20-40 2016 7.47 0.0211 2.96 0.0975 0.29 0.7571
2017 6.47 0.0292 23.99 0.0002 18.75 0.0004
2018 46.48 小鱼0.0001 3.07 0.0911 0.50 0.6232

Table 5

Soil field water capacity and its increases under different treatments from 2016 to 2018"

土层
Soil layer (cm)
处理
Treatment
2016 2017 2018
田间持水量
Field water capacity (%)
田间持水量上升比率
Field water capacity increase (%)
田间持水量
Field water capacity (%)
田间持水量上升比率
Field water capacity increase (%)
田间持水量
Field water capacity (%)
田间持水量上升比率
Field water capacity increase (%)
0-20 RG0 20.73±0.20c 19.16±0.52cd 19.24±0.30b
TG1 21.58±0.64bc 4.10 18.84±0.41d -1.67 20.38±0.45ab 5.92
TG2 21.82±0.28bc 5.24 20.46±0.73bc 6.77 20.67±0.48a 7.43
TG3 21.75±0.25bc 4.94 20.34±0.31bc 6.16 20.50±0.74ab 6.53
RG1 23.14±0.31a 11.65 21.19±0.29ab 10.62 20.37±0.38ab 5.86
RG2 22.24±0.74ab 7.28 20.64±0.29b 7.72 20.39±0.12ab 5.99
RG3 22.72±0.27ab 9.60 22.01±0.40a 14.86 21.52±0.41a 11.83
20-40 RG0 19.94±0.32c 17.77±1.01bc 17.23±0.53c
TG1 20.88±0.19bc 4.72 17.15±0.54c -3.47 19.78±0.55ab 14.79
TG2 21.54±0.42ab 8.04 20.76±1.15a 16.81 19.34±0.27ab 12.23
TG3 21.42±0.08ab 7.44 20.45±0.86a 15.08 19.47±0.35ab 12.98
RG1 21.45±0.47ab 7.58 15.82±0.38c -10.98 18.58±0.82bc 7.83
RG2 20.92±0.56bc 4.92 20.23±0.72ab 13.82 19.63±0.56ab 13.92
RG3 22.28±0.14a 11.74 19.86±1.14ab 11.75 20.33±0.38a 17.98

Table 6

Two-way ANOVA analysis of the interaction between tillage and pelletized straw amount on field water capacity"

土层
Soil layer (cm)
年份
Year
耕作方式
Tillage management
秸秆用量
Straw amount
耕作方式×秸秆用量
Tillage management ×Straw amount
F P F P F P
0-20 2016 5.85 0.0361 0.23 0.7992 0.66 0.5399
2017 16.29 0.0024 3.71 0.0624 3.41 0.0743
2018 0.35 0.5650 0.86 0.4509 0.92 0.4299
20-40 2016 0.75 0.4071 1.98 0.1887 2.14 0.1690
2017 2.02 0.1855 19.70 0.0003 0.20 0.8218
2018 0.07 0.7985 0.49 0.6269 2.30 0.1504

Fig. 1

Changes of total porosity and capillary porosity in 0-20 cm and 20-40 cm soil layers under different years"

Table 7

Two-way ANOVA analysis of the interaction between tillage and pelletized straw amount on total porosity and capillary porosity"

土层
Soil layer (cm)
年份
Year
指标
Index
耕作方式Tillage management 秸秆用量 Straw amount 耕作方式×秸秆用量 Tillage management×straw amount
F P F P F P
0-20 2016 总孔隙度Total porosity (%) 23.96 0.0006 0.88 0.4435 0.75 0.4967
毛管孔隙度Capillary porosity (%) 0.78 0.3992 0.08 0.9264 2.04 0.1806
2017 总孔隙度Total porosity (%) 48.86 小鱼0.0001 5.79 0.0213 8.66 0.0066
毛管孔隙度Capillary porosity (%) 0.91 0.3622 0.31 0.7386 1.28 0.3191
2018 总孔隙度Total porosity (%) 1.97 0.1903 5.26 0.0275 6.24 0.0174
毛管孔隙度Capillary porosity (%) 0.44 0.5236 0.40 0.6779 0.46 0.6425
20-40 2016 总孔隙度Total porosity(%) 9.75 0.0108 3.87 0.0568 0.37 0.6971
毛管孔隙度Capillary porosity (%) 9.62 0.0112 1.48 0.2728 5.60 0.0234
2017 总孔隙度Total porosity (%) 6.40 0.0298 23.87 0.0002 18.66 0.0004
毛管孔隙度Capillary porosity (%) 0.03 0.8725 53.93 小鱼0.0001 1.74 0.2240
2018 总孔隙度Total porosity (%) 23.13 0.0007 1.52 0.2646 0.25 0.7863
毛管孔隙度Capillary porosity (%) 12.78 0.0050 0.49 0.6255 4.21 0.0471

Fig. 2

Distribution of soil aggregates under different treatments"

Table 8

Changes of R0.25, MWD, GMD and D in soil under different pelletized straw incorporation management "

土层
Soil layer (cm)
处理
Treatment
2016 2017 2018
R0.25 MWD (mm) GMD (mm) D R0.25 MWD (mm) GMD (mm) D R0.25 MWD (mm) GMD (mm) D
0-20 RG0 49.65±2.49c 0.51±0.04b 0.26±0.01d 2.65±0.02a 66.05±1.99c 0.66±0.03d 0.37±0.02d 2.61±0.02a 69.44±1.18b 0.64±0.02d 0.37±0.01c 2.61±0.02a
TG1 62.03±2.25ab 0.61±0.01a 0.34±0.02ab 2.63±0.01a 69.22±2.61c 0.62±0.02d 0.36±0.01d 2.60±0.02ab 72.71±2.02ab 0.77±0.03ab 0.44±0.03ab 2.60±0.02a
TG2 63.53±2.89ab 0.61±0.02a 0.34±0.01ab 2.62±0.01a 76.38±2.81b 0.75±0.03c 0.42±0.03c 2.59±0.01ab 74.92±1.65ab 0.87±0.06a 0.49±0.03a 2.59±0.02a
TG3 65.46±3.01a 0.63±0.03a 0.36±0.02a 2.62±0.01a 76.80±2.34b 0.75±0.04c 0.48±0.03c 2.58±0.01ab 69.46±1.05b 0.66±0.03cd 0.38±0.02c 2.61±0.02a
RG1 61.77±2.03ab 0.59±0.02a 0.32±0.01bc 2.63±0.01a 82.41±3.01ab 0.98±0.05b 0.61±0.02b 2.56±0.01b 78.68±2.99a 0.85±0.05a 0.49±0.04a 2.58±0.01a
RG2 59.84±1.98b 0.51±0.02b 0.29±0.01cd 2.63±0.02a 84.69±3.24a 1.04±0.07ab 0.65±0.02ab 2.55±0.01b 71.42±1.47b 0.77±0.02ab 0.42±0.02b 2.60±0.01a
RG3 60.55±2.01ab 0.49±0.03b 0.30±0.01cd 2.62±0.01a 84.77±2.99a 1.19±0.07a 0.72±0.04a 2.56±0.01b 73.86±1.87ab 0.72±0.02bc 0.43±0.02ab 2.59±0.01a
20-40 RG0 61.51±1.71b 0.65±0.04b 0.35±0.01bc 2.63±0.02a 74.31±2.01ab 0.88±0.04a 0.49±0.03ab 2.59±0.02a 72.01±1.59a 0.73±0.03ab 0.42±0.02b 2.60±0.01a
TG1 62.70±1.32b 0.53±0.02cd 0.31±0.01c 2.62±0.01a 74.12±1.42ab 0.76±0.03b 0.44±0.01c 2.59±0.02a 72.11±1.77a 0.67±0.02b 0.40±0.01b 2.60±0.01a
TG2 69.54±2.47a 0.59±0.03bc 0.36±0.02b 2.60±0.01a 74.15±1.27ab 0.79±0.04b 0.45±0.02bc 2.59±0.01a 75.01±2.04a 0.72±0.03ab 0.43±0.02ab 2.59±0.01a
TG3 63.34±1.56b 0.51±0.02d 0.31±0.01c 2.62±0.01a 75.34±2.77ab 0.74±0.02b 0.44±0.01c 2.58±0.01a 73.44±1.99a 0.67±0.02b 0.40±0.02b 2.59±0.01a
RG1 61.84±1.23b 0.52±0.02cd 0.31±0.01c 2.62±0.01a 72.52±1.44bc 0.83±0.06ab 0.47±0.03bc 2.60±0.02a 75.34±2.36a 0.78±0.04a 0.46±0.02a 2.59±0.01a
RG2 62.29±1.20b 0.56±0.03bc 0.33±0.01c 2.62±0.01a 77.08±3.28a 0.93±0.06a 0.54±0.04a 2.58±0.01a 72.62±1.63a 0.76±0.02a 0.44±0.01ab 2.60±0.02a
RG3 71.28±4.11a 0.79±0.06a 0.44±0.03a 2.60±0.01a 70.82±1.02c 0.76±0.02b 0.43±0.02c 2.60±0.02a 72.85±1.02a 0.79±0.04a 0.44±0.02ab 2.60±0.01a

Fig. 3

Redundancy analysis of soil physical properties and particle-size of soil aggregate in 0-20 cm and 20-40 cm soil layers"

Fig. 4

Cluster analysis of all treatments"

[1] 孙利军, 张仁陟, 黄高宝. 保护性耕作对黄土高原旱地地表土壤理化性状的影响. 干旱地区农业研究, 2007(6):207-211.
SUN L J, ZHANG R Z, HUANG G B. Effects of the conservation tillage on the physicochemical characteristics of soil surface in the semi-arid areas of the Loess Plateau. Agricultural Research in the Arid Areas, 2007(6):207-211. (in Chinese)
[2] 翟振, 李玉义, 逄焕成, 王婧, 张莉, 董国豪, 郭建军, 郭智慧. 黄淮海北部农田犁底层现状及其特征. 中国农业科学, 2016, 49(12):2322-2332.
ZHAI Z, LI Y Y, PANG H C, WANG J, ZHANG L, DONG G H, GUO J J, GUO Z H. Study on present situation and characteristics of plow pan in the northern region of Huang Huai Hai Plain. Scientia Agricultura Sinica, 2016, 49(12):2322-2332. (in Chinese)
[3] 姜灿烂, 何园球, 李辉信, 李成亮, 刘晓利, 陈平帮, 王艳玲. 长期施用无机肥对红壤旱地养分和结构及花生产量的影响. 土壤学报, 2009, 46(6):1102-1109.
JIANG C L, HE Y Q, LI H X, LI C L, LIU X L, CHEN P B, WANG Y L. Effect of long-term inorganic fertilization on soil nutrient and structure and peanut yield in upland red soil. Acta Pedologica Sinica, 2009, 46(6):1102-1109. (in Chinese)
[4] CANBOLAT M Y, BILEN S, CAKMAKCI R, SAHIN F, AYDIN A. Effect of plant growth promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology & Fertility of Soils, 2006, 42(4):350-357.
[5] 韩晓增, 邹文秀, 王凤仙, 王凤菊. 黑土肥沃耕层构建效应. 应用生态学报, 2009, 20(12):2996-3002.
HAN X Z, ZOU W X, WANG F X, WANG F J. Construction effect of fertile cultivated layer in black soil. Chinese Journal of Applied Ecology, 2009, 20(12):2996-3002. (in Chinese)
[6] HUANG R, LAN M, LIU J, GAO M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning. Environmental Science and Pollution Research, 2017, 24(36):1-11.
doi: 10.1007/s11356-015-5582-4
[7] JIANG H, HAN X Z, ZOU W X, HAO X X, ZHANG B . Seasonal and long-term changes in soil physical properties and organic carbon fractions as affected by manure application rates in the Mollisol region of Northeast China. Agriculture, Ecosystems & Environment, 2018, 268:133-143.
doi: 10.1016/j.agee.2018.09.007
[8] CONG P, LI Y Y, WANG J, GAO Z J, PANG H C, ZHANG L, LIU N, DONG J X. Increasing straw incorporation rates improves subsoil fertility and crop yield in the Huang-Huai-Hai Plain of China. Archives of Agronomy and Soil Science, 2020, 66:1976-1990.
doi: 10.1080/03650340.2019.1704735
[9] SCHÄFFER B, ATTINGER W, SCHULIN R. Compaction of restored soil by heavy agricultural machinery-soil physical and mechanical aspects. Soil and Tillage Research, 2007, 93(1):28-43.
doi: 10.1016/j.still.2006.03.007
[10] 蒲境, 史东梅, 娄义宝, 段腾, 宋鸽. 不同耕作深度对红壤坡耕地耕层土壤特性的影响. 水土保持学报, 2019, 33(5):8-14.
PU J, SHI D M, LOU Y B, DUAN T, SONG G. Effect of different tillage depth on soil properties of ploughing layer in slope cultivated land of red soil. Journal of Soil and Water Conservation, 2019, 33(5):8-14. (in Chinese)
[11] 童文杰, 邓小鹏, 徐照丽, 马二登, 晋艳, 李军营. 不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响. 中国生态农业学报, 2016, 24(11):1464-1472.
TONG W J, DENG X P, XU Z L, MA E D, JIN Y, LI J Y. Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco. Chinese Journal of Eco-Agriculture, 2016, 24(11):1464-1472. (in Chinese)
[12] ROMANECKAS K, ARAUSKIS E, PILIPAVICIUS V, SAKALAUKAS A. Impact of short-term ploughless tillage on soil physical properties, winter oilseed rape seedbed formation and productivity parameters. Journal of Food Agriculture and Environment, 2011, 9(2):295-299.
[13] ZHANG X, XIN X, ZHU A, ZHANG J B, YANG W L. Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena, 2017, 156:176-183.
doi: 10.1016/j.catena.2017.04.012
[14] 王婧, 张莉, 逄焕成, 张珺穜. 秸秆颗粒化还田加速腐解速率提高培肥效果. 农业工程学报, 2017, 33(6):177-183.
WANG J, ZHANG L, PANG H C, ZHANG J T. Returning granulated straw for accelerating decomposition rate and improving soil fertility. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6):177-183. (in Chinese)
[15] 丛萍, 李玉义, 高志娟, 王婧, 张莉, 逄焕成. 秸秆颗粒化高量还田快速提高土壤有机碳含量及小麦玉米产量. 农业工程学报, 2019, 35(1):148-156.
CONG P, LI Y Y, GAO Z J, WANG J, ZHANG L, PANG H C. High dosage of pelletized straw returning rapidly improving soil organic carbon content and wheat-maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1):148-156. (in Chinese)
[16] 张莉, 王婧, 逄焕成, 张珺穜, 郭建军, 董国豪, 丛萍. 秸秆颗粒还田对土壤养分和冬小麦产量的影响. 中国生态农业学报, 2017, 25(12):1770-1778.
ZHANG L, WANG J, PANG H C, ZHANG J T, GUO J J, DONG G H, CONG P. Effects of granulated straw incorporation on soil nutrient contents and grain yield of winter wheat. Chinese Journal of Eco-Agriculture, 2017, 25(12):1770-1778. (in Chinese)
[17] 中国科学院南京土壤研究所土壤物理研究室. 土壤物理性状测定法. 北京: 科学出版社, 1978.
Laboratory of Soil Physics, Nanjing Institute of Soil Research, Chinese Academy of Sciences. Determination of Soil Physical Properties. Beijing: Science Press, 1978. (in Chinese)
[18] 李肖, 陈晨, 林杰, 朱茜, 董波, 丁鸣鸣. 侵蚀强度对淮北土石山区土壤团聚体组成及稳定性的影响. 水土保持研究, 2019, 26(4):56-61, 67.
LI X, CHEN C, LIN J, ZHU Q, DONG B, DING M M. Effect of erosion intensity on composition and stability of soil aggregates in rocky mountain area of Huaibei. Research of Soil and Water Conservation, 2019, 26(4):56-61, 67. (in Chinese)
[19] 王珊, 毛玲, 廖浩, 蔡华, 孙文攀, 陈良丹. 种植年限对植烟土壤团聚体组成与稳定性的影响. 西南农业学报, 2017, 30(6):1421-1425.
WANG S, MAO L, LIAO H, CAI H, SUN W P, CHEN L D. Effects of soil aggregates composition and stability with different planting years in tobacco. Southwest China Journal of Agricultural Sciences, 2017, 30(6):1421-1425. (in Chinese)
[20] 蔡立群, 齐鹏, 张仁陟. 保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响. 水土保持学报, 2008, 22(2):141-145.
CAI L Q, QI P, ZHANG R Z. Effects of conservation tillage measures on soil aggregates stability and soil organic carbon in two sequence rotation system with spring wheat and field pea. Journal of Soil and Water Conservation, 2008, 22(2):141-145. (in Chinese)
[21] 崔建平, 田立文, 郭仁松, 林涛, 徐海江, 李发云. 深翻耕作对连作滴灌棉田土壤含水率及含盐量影响的研究. 中国农学通报, 2014, 30(12):134-139.
CUI J P, TIAN L W, GUO R S, LIN T, XU H J, LI F Y. Effect of deep tilling on soil moisture content and salinity content of drip irrigation cotton content of drip irrigation cotton continuous cropping. Chinese Agricultural Science Bulletin, 2014, 30(12):134-139. (in Chinese)
[22] 江培福, 雷廷武, 刘晓辉, 武阳, 李鑫, 王全九. 用毛细吸渗原理快速测量土壤田间持水量的研究. 农业工程学报, 2006(7):1-5.
JIANG P F, LEI T W, LIU X H, WU Y, LI X, WANG Q J. Principles and experimental verification of capillary suction method for fast measurement of field capacity. Transactions of the Chinese Society of Agricultural Engineering, 2006(7):1-5. (in Chinese)
[23] 张帅, 孔德刚, 常晓慧, 翟利民. 秸秆深施对土壤蓄水能力的影响. 东北农业大学学报, 2010, 41(6):127-129.
ZHANG S, KONG D G, CHANG X H, ZHAI L M. Effect of straw deep application on soil water storage capacity. Journal of Northeast Agricultural University, 2010, 41(6):127-129. (in Chinese)
[24] 李永宁, 王忠禹, 王兵, 张宝琦, 张娜娜. 黄土丘陵区典型植被土壤物理性质差异及其对导水特性影响. 水土保持学报, 2019, 33(6):176-181, 189.
LI Y N, WANG Z Y, WANG B, ZHANG B Q, ZHANG N N. Differences in soil physical properties of typical vegetation in loess hilly region and effects on water conductivity. Journal of Soil and Water Conservation, 2019, 33(6):176-181, 189. (in Chinese)
[25] 杨永辉, 武继承, 毛永萍, 何方, 张洁梅, 高翠民, 潘晓莹, 王越. 免耕对土壤剖面孔隙分布特征的影响. 中国生态农业学报, 2018, 26(7):1019-1028.
YANG Y H, WU J C, MAO Y P, HE F, ZHANG J M, GAO C M, PAN X Y, WANG Y. Effect of no-tillage on pore distribution in soil profile. Chinese Journal of Eco-Agriculture, 2018, 26(7):1019-1028. (in Chinese)
[26] RUBINIĆ V, HUSNJAK S. Clay and humus contents have the key impact on physical properties of Croatian Pseudogleys. Agriculturae Conspectus Scientificus, 2016, 81:187-191.
[27] WRIGHT S F, ANDERSON R L. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biology and Fertility of Soils, 2000, 31(3/4):249-253.
doi: 10.1007/s003740050653
[28] XIE L, LIU M, NI B, WANG Y F. Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention. Journal of Agricultural and Food Chemistry, 2012, 60:6921-6928.
doi: 10.1021/jf3001235
[29] 王岩, 张莹, 沈其荣, 史瑞和, 黄东迈. 施用有机、无机肥后土壤微生物量、固定态铵的变化及其有效性研究. 植物营养与肥料学报, 1997, 3(4):307-314.
WANG Y, ZHANG Y, SHEN Q R, SHI R H, HUANG D M. The changes of soil microbial biomass and the clay fixed ammonium after application of organic and inorganic fertilizers and their bio-effects. Plant Nutrition and Fertilizer Science, 1997, 3(4):307-314. (in Chinese)
[30] LAL R, SHUKILA M K. Principles of Soil Physics. New York/Basel: Marchel Dekker,Inc., 2004.
[31] 苏静, 赵世伟. 土壤团聚体稳定性评价方法比较. 水土保持通报, 2009, 29(5):113-117.
SU J, ZHAO S W. Comparison of the analysis methods for soil aggregate stability. Bulletin of Soil and Water Conservation, 2009, 29(5):113-117. (in Chinese)
[32] OBALUM S E, UTEAU-PUSCHMANN D, PETH S. Reduced tillage and compost effects on soil aggregate stability of a silt-loam Luvisol using different aggregate stability tests. Soil and Tillage Research, 2019, 189:217-228.
doi: 10.1016/j.still.2019.02.002
[33] SODHI G, BERI V, BENBI D. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system. Soil and Tillage Research, 2009, 103:412-418.
doi: 10.1016/j.still.2008.12.005
[34] 丛萍, 逄焕成, 王婧, 刘娜, 李玉义, 张莉. 粉碎与颗粒秸秆高量还田对黑土亚耕层土壤有机碳的提升效应. 土壤学报, 2020, 57(4):811-823.
CONG P, PANG H C, WANG J, LIU N, LI Y Y, ZHANG L. Effect of returning chopped and pelletized straw at a high rate enhancing soil organic carbon in subsoil of farmlands of black soil. Acta Pedologica Sinica, 2020, 57(4):811-823. (in Chinese)
[35] 赵冬, 许明祥, 刘国彬, 张蓉蓉, 脱登峰. 用显微CT研究不同植被恢复模式的土壤团聚体微结构特征. 农业工程学报, 2016, 32(9):123-129.
ZHAO D, XU M X, LIU G B, ZHANG R R, TUO D F. Characterization of soil aggregate microstructure under different revegetation types using micro-computed tomography. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9):123-129. (in Chinese)
[36] MAJOR J, LEHMANN J, RONDON M, GOODALE C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 2010, 16(4):1366-1379.
doi: 10.1111/gcb.2010.16.issue-4
[1] LI JingYu,LI Qian,WU XuePing,WU HuiJun,SONG XiaoJun,ZHANG YongQing,LIU XiaoTong,DING WeiTing,ZHANG MengNi,ZHENG FengJun. Regional Variation in the Effects of No-Till on Soil Water Retention and Organic Carbon Pool [J]. Scientia Agricultura Sinica, 2020, 53(18): 3729-3740.
[2] YanHua CHEN,Le WANG,ShuXiang ZHANG,Ning GUO,ChangBao MA,ChunHua LI,MingGang XU,GuoYuan ZOU. Quality Change of Cinnamon Soil Cultivated Land and Its Effect on Soil Productivity [J]. Scientia Agricultura Sinica, 2019, 52(24): 4540-4554.
[3] HE Yu-ting, WANG Chang-quan, SHEN Jie, LI Bin, LI Bing, CHEN Lin, PAN Xing-bing. Effects of Two Biochars on Red Soil Aggregate Stability and Microbial Community [J]. Scientia Agricultura Sinica, 2016, 49(12): 2333-2342.
[4] DENG Yu-song, DING Shu-wen, CAI Chong-fa, Lü Guo-an, XIA Dong, ZHU Yun. Spatial Distribution of the Collapsing Alluvial Soil Physical Properties in Southeastern Hubei [J]. Scientia Agricultura Sinica, 2014, 47(24): 4850-4857.
[5] BAI Yi-Ru, WANG You-Qi, ZHAN Xiu-Li. Effects of Different Land Use Types on Soil Physical Properties and Their Distributions in Farming-Pastoral Ecotone of Northern Shaanxi [J]. Scientia Agricultura Sinica, 2013, 46(8): 1619-1627.
[6] CHEN Zheng-Fa, SHI Dong-Mei, XIE Jun-Qiang, ZHANG Bing. Aggregate Stability of Purple Soil and Its Impacts on Soil Erosion of Slope Dry Land [J]. Scientia Agricultura Sinica, 2011, 44(13): 2721-2729 .
[7] Li Hui-Ke. Effects of Different Herbage on Soil Physical Properties of non-irrigated Apple Orchard in Weibei Loess Plateau [J]. Scientia Agricultura Sinica, 2008, 41(7): 2070-2076 .
[8] ,,,,. A Study of the Effects of Different Grazing Intensities on Soil Physical Properties of Grassland and Forest Floor -- For Example Hilly and Gully Regions on the Loess Plateau [J]. Scientia Agricultura Sinica, 2006, 39(7): 1501-1506 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!