Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (7): 1189-1201.doi: 10.3864/j.issn.0578-1752.2017.07.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Association Analysis of Salt Tolerance Related Traits in Brassica napus and Candidate Gene Prediction

HE YaJun, WU DaoMing, YOU JingCan, QIAN Wei   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716
  • Received:2016-10-14 Online:2017-04-01 Published:2017-04-01

Abstract: 【Objective】To find the SNP loci and candidate genes associated with salt tolerance in rapeseed, genome-wide association analysis of salt tolerance related traits in B. napus was performed. 【Method】 The seeds of 307 inbred lines of the association panel were germinated in Petri dishes under 1.2% NaCl. The control was under the sterile dH2O. Three salt tolerances related traits, root length, fresh weight and germination rate of each line were measured seven days after planting. The relative value of root length, fresh weight and germination rate under the salt tolerance condition were calculated. The software TASSEL5.0 were employed to examine salt tolerance related traits in B. napus using a genome-wide association study with a 60K Brassica Illumina® Infinium SNP array. The software SPAGeDi v1.4 was used to calculate the relative kinship matrix comparing all pairs of the 307 accessions. STRUCTURE v2.3.4 was employed to analyze the population structure of the association panel. In this study, to avoid the false negative associations, three mixed models controlling relative kinship, K model, Q+K model and PCA +K model were chosen to determine the statistical associations between phenotypes and genotypes to evaluate the effects of population structure and relative kinship on salt tolerance related traits. The optimum model was determined according to observed P values and expected P values of all SNPs. TASSEL 5.0 was used to perform genome-wide analysis under the optimum model. Based on the physical positions of the associated SNP loci, the corresponding genomic sequences of the regions and flanking sequences (200 kb upstream and downstream of the SNPs) were extracted. The genes in the target intervals were extracted subsequently. According to the salt tolerance related genes in Arabidopsis, the homologous genes of rapeseed were screened out in the target genome interval.【Result】The association analysis identified 164 SNP loci significantly associated with the root length, 23 SNP loci with fresh weight, and 38 SNP loci with germination rate. The SNP loci which were most significantly associated with root length, fresh weight and germination rate were located on chromosomes A08, A02 and A06, and explained 23.84%, 18.59% and 31.81% of the phenotypic variance, respectively. Fifty candidate genes were found to be related to salt tolerance in the target interval of B. napus. These candidate genes include transcription factors Myb, WRKY, ABI1, bZIP, ERF1, CZF1, XERICO and some different functional genes which are regulated by the transcription factors, such as NHX1, PTR3, CAT1, HKT, CAX1, ACER, STH, STO, etc. The common salt tolerance gene BnaA03g14410D on chromosome A03 was screened out according to two different traits, root length and germination rate. In addition, the salt tolerance candidate genes contain two pairs of tandem repeats genes which are BnaA03g18900D and BnaA03g18910D located on chromosome A03 and BnaC09g19080D, BnaC09g19090D and BnaC09g19100D located on chromosome C09. Moreover, the salt tolerant candidate genes also contain two duplicated genes BnaC02g39600D and BnaC02g39630D with very close distances.【Conclusion】Totally, 225 SNP loci were detected significantly associated with salt tolerance related traits and fifty candidate genes were found.

Key words: Brassica napus, salt tolerance trait, GWAS, SNPs

[1]    Yong H, Wang C, Bancroft I, Li F, Wu X, Kitashiba H, Nishio T. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Planta, 2015, 242: 313-326.
[2]    Ruan C J, da Silva J A T, Mopper S, Qin P, Lutts S. Halophyte improvement for a salinized world. Critical Reviews in Plant Sciences, 2012, 29: 329-359.
[3]    Munns R, Tester M. Mechanisms of salinity tolerance. Plant Biology, 2008, 59: 651-681.
[4]    沈义国, 陈受宜. 植物盐胁迫应答的分子机制. 遗传, 2001, 23(4): 365-369.
Shen Y G, Chen S Y. Molecular mechanism of plant responses to salt stress. Heredita, 2001, 23(4): 365-369. (in Chinese)
[5]    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7: 405-410.
[6]    Byrt C S, Platten J D, Spielmeyer W, James R A, Lagudah E S, Dennis E S, Tester M, Munns R. HKT1; 5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiology, 2007, 143: 1918-1928.
[7]    Ashraf M, Athar H R, Harris P J C, Kwon T R. Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 2008, 97: 45-110.
[8]    Zhu J K. Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 2001, 4(5): 401-406.
[9]    Qiu Q S, Guo Y, Dietrich M A, Schumaker K S, Zhu J K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the USA, 2002, 99: 8436-8441.
[10]   Yamaguchi T, Hamamoto S, Uozumi N. Sodium transport system in plant cells. Frontiers in Plant Science, 2013, 4: 410.
[11]   Cheng N H, Pittman J K, Zhu J K, Hirschi K D. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. Journal of Biological Chemistry, 2004, 279: 2922-2926.
[12]   Qiu Q S, Guo Y, Quintero F J, Pardo J M, Schumaker K  S, Zhu J K. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. Journal of Biological Chemistry, 2004, 279: 207-215.
[13]   Batelli G, Verslues P E, Agius F, Qiu Q, Fujii H, Pan S, Schumaker K S, Grillo S, Zhu J K. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Molecular and cellular biology, 2007, 27: 7781-7790.
[14]   González E, Danehower D, Daub M E. Vitamer levels, stress response, enzyme activity, and gene regulation of Arabidopsis lines mutant in the pyridoxine/pyridoxamine 5'-phosphate oxidase (PDX3) and the pyridoxal kinase (SOS4) genes involved in the vitamin B6 salvage pathway. Plant Physiology, 2007, 145(3): 85-96.
[15]   Shi H, Kim Y, Guo Y, STEVENSON B, ZHU J K. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. The Plant Cell, 2003, 15(1): 19-32.
[16]   Zhu J, Lee B H, Dellinger M, CUI X P, ZHANG C Q, WU S, NOTHNAGEL E A, ZHU J K. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. The Plant Journal, 2010, 63(1): 128-140
[17]   Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied Genetics, 2004, 108: 253-260.
[18]   Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37: 1141-1146.
[19]   Ren Z, Zheng Z, Chinnusamy V, Zhu J, Cui X, Iida K, Zhu J K. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2010, 107: 5669-5674.
[20]   Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 2012, 30: 360-364.
[21]   Long N V, Dolstra O, Malosetti M, Kilian B, Graner  A, Visser R G, van der Linden C G. Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2013, 126: 2335-2351.
[22]   Tang J, Yu X, Luo N, Xiao F, Camberato J J, Jiang Y. Natural variation of salinity response, population structure and candidate genes associated with salinity tolerance in perennial ryegrass accessions. Plant Cell Environ, 2013, 36: 2021-2033.
[23]   Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A ,Yaegashi H, Obara T ,Oikawa K, Utsushi H , Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumura H, Urasaki N. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 2015, 33(5): 445-449.
[24]   Zhou S, Chen X, Zhang X, Li Y. Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na?/H? antiporter gene SeNHX1. Biotechnology Letters, 2008, 30(2): 369-376.
[25]   Qiao W H, Zhao X Y, Li W, Luo Y, Zhang X S. Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Reports, 2007, 26(9): 1663-1672.
[26]   Brini F, Hanin M, Mezghani I, Berkowitz G A, Masmoudi K. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. Journal of Experimental Botany, 2007, 58(2): 301-308.
[27]   陈凤莲, 刘志斌, 王健美, 李旭锋, 杨毅. 油菜BnRCH基因提高转基因拟南芥的耐盐性研究. 四川大学学报(自然科学版), 2013, 50(3): 643-648.
Chen F L, Liu Z B, Wang J M, LI X F, YANG Y. The studies of gene BnRCH from Brassica napus enhances the tolerance to salt stress in transgenic Arabidopsis. Journal of Sichuan University (Natural Science), 2013, 50(3): 643-648. (in Chinese)
[28]   Ashraf M, Mcneilly T. Salinity tolerance in brassica oilseeds. Critical Reviews in Plant Sciences, 2011, 23(2): 157-174.
[29]   李春龙. 盐胁迫对油菜种子萌发的影响. 安徽农业科学, 2008, 36(26): 11198-11199.
Li C L. Effect of salt stress on germination of rapes seed. Journal of Anhui Agricultural Sciences, 2008, 36(26): 11198-11199. (in Chinese)
[30]   龙卫华, 浦惠明, 张洁夫, 戚存扣, 张学昆. 甘蓝型油菜发芽期的耐盐性筛选. 中国油料作物学报, 2013, 35(3): 271-275.
Long W H, Pu H M, Zhang J F, Qi C K, Zhang X K.  Screening of Brassica napus for salinity tolerance at germination stage. Chinese Journal of Oil Crop Sciences, 2013, 35(3): 271-275. (in Chinese)
[31]   顾东祥, 汤亮, 曹卫星, 朱艳. 基于图像分析方法的水稻根系形态特征指标的定量分析. 作物学报, 2010, 36(5): 810-817.
Gu D X, Tang L, Cao W X, ZHU Y. Quantitative analysis on root morphological characteristics based on image analysis method in rice. Acta Agronomica Sinica, 2010, 36(5): 810-817. (in Chinese)
[32]   Nasu S, Kitashiba H, Nishio T. ‘‘Na-no-hana Project’’ for recovery from the tsunami disaster by producing salinity-tolerant oilseed rape lines: selection of salinity-tolerant lines of Brassica crops. Journal of Integrated Field Science, 2012, 9: 33-37.
[33]   Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003, 253: 201-218.
[34]   Hardy O, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2002, 2: 618-620.
[35]   Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.
[36]   Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 2005, 14(8): 2611-2620.
[37]   Yang X, Yan J, Shah T. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theoretical and Applied Genetics, 2010, 121: 417-431.
[38]   Luo X, Ma C, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J, Shen  J, Yi B, Fu T. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015, 16: 379.
[39]   Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402.
[40]   Chalhoub B, Denoeud F, Liu S, TANG H B,WANG X Y, CHIQUET J L, BELCRAM H, TONG C B. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.  
[41]   DUAN L, DIETRICH D, NG C H, CHAN P M Y, BHALERAO R, BENNETT M J. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. The Plant Cell, 2013, 25(1): 324-341.
[42]   NIU D, WANG X, WANG Y, SONG X, WANG J, GUO J, ZHAO H. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochemical and Biophysical Research Communication, 2015, 469(1): 120-125.
[43]   WAIDMANN S, KUSENDA B, MAYERHOFER J, MECHTLER K, JONAK C. A DEK domain-containing protein modulates chromatin structure and function in Arabidopsis. The Plant Cell, 2014, 26(11): 4328-4344.
[44]   CHEN D, MA X, LI C, ZHANG W, XIA G, WANG M. A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana. Plant Cell Reports, 2014, 33(11): 1815-1827.
[45]   CHENG M C, LIAO P M, KUO W W, LIN T P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 2013, 162(3): 1566-1582.
[46]   ZHANG Z, WANG J, ZHANG R, HUANG R. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. The Plant Journal, 2012, 71(2): 273-287.
[47]   SUN L, LU S J, ZHANG S S, ZHOU S F, SUN L, LIU J X. The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis. Molecular Plant, 2013, 6(5): 1605-1615.
[48]   JIANG Y Q, DEYHOLOS M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 2009, 69(1): 91-105.
[49]   GANGAPPA S N, HOLM M, BOTTO J F. Molecular interactions of BBX24 and BBX25 with HYH, HY5 HOMOLOG, to modulate Arabidopsis seedling development. Plant Signaling and Behavior, 2013, 8(8): e25208.
[50]   SUN L, LU S J, ZHANG S S, ZHOU S F, SUN L, LIU J X. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant and Cell Physiology, 2007, 48(8): 1148-1158.
[51]   ZHANG X, LIU S, TAKANO T. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Molecular Biology, 2008, 68(1): 131-143.
[52]   Zhou H, Zhao J, Yang Y, Chen C, Liu Y, Jin X, Chen L, Li  X, Deng X W, Schumaker K S, Guo Y. BIQUITIN-SPECIFIC PROTEASE16 modulates salt tolerance in Arabidopsis by regulating Na+/H+ antiport activity and serine hydroxymethyltransferase stability. The Plant Cell, 2012, 24: 5106-5122.
[53]   DIXIT A R, DHANKHER O P. A novel stress-associated protein ‘AtSAP10’ from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. Plos One, 2011, 6(6): 38-44.
[54]   WU J X, LI J, LIU Z, YIN J, CHANG Z Y, RONG C, WU J L, BI F  C, YAO N. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance. The Plant Journal, 2015, 81(5): 767-780. 
[55]   CONNORTON J M, WEBSTER R E, CHENG N H, PITTMAN1 J K. Knockout of multiple Arabidopsis cation/H(+) exchangers suggests isoform-specific roles in metal stress response, germination and seed mineral nutrition. Plos One, 2012, 7(10): e47455.
[56]   ZHOU J, WANG J, ZHENG Z Y, FAN B F, YU J Q, CHEN. Characterization of the promoter and extended C-terminal domain of Arabidopsis WRKY33 and functional analysis of tomato WRKY33 homologues in plant stress responses. Journal of Experimental Botany, 2015, 66(15): 583-589.
[57]   BOUCHOUX S, BOURENNANE E. The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. Plant Physiology, 2014, 166(1):109-124.
[58]   KO J H, YANG S H, HAN K H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. The Plant Journal, 2006, 47(3): 343-355.
[59]   XU K, ZHANG H E, XIA T. A novel plant vacuolar Na+/H+ antiporter gene evolved by DNA shuffling confers improved salt tolerance in yeast. Journal of Biological Chemistry, 2010, 285(30): 2999-3006.
[60]   MA X, QIAO Z, CHEN D, YANG W, ZHOU R, ZHANG W, WANG M. CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana. Plant Molecular Biology, 2015, 88(3): 287-299.
[61]   CUI F, LIU L, ZHAO Q, ZHANG Z, LI Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. The Plant Cell, 2012, 24(1): 233-244.
[62]   TAJI T, OHSUMI C, IUCHI S, SEKI M, KASUGA M, KOBAYASHI M, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 2002, 29(29): 417-426.
[63]   KIM J H, NGUYEN N H, NGUYEN N T, HONG S W, LEE H. Loss of all three calreticulins, CRT1, CRT2 and CRT3, causes enhanced sensitivity to water stress in Arabidopsis. Plant Cell Reports, 2013, 32(12): 1843-1853.
[64]   HERMANS C, PORCO S, VERBRUGGEN N, BUSH D R. Chitinase-like protein CTL1 plays a role in altering root system architecture in response to multiple environmental conditions. Plant Physiology, 2009, 152(2): 904-917.
[65]   INDORF M, CORDERO J, NEUHAUS G, RODRÍGUEZ-FRANCO M. Salt tolerance (STO), a stress-related protein, has a major role in light signalling. The Plant Journal, 2007, 51(4): 563-574.
[66]   YAMAGUCHISHINOZAKI K, SHINOZAKI K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6(2): 251-264.
[67]   KIM Y H, KIM M D, CHOI Y I, PARK S C, YUN D J, NOH E W, LEE H S, KWAK S S. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnology Journal, 2011, 9(3): 334-347.
[68]   FORMENT J, SERRANO R, VICENTE O. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. The Plant Journal, 2002, 30(5): 511-519.
[69]   ZHU J, FU X, KOO Y D, ZHU J K, JENNEY F E. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Molecular and Cellular Biology, 2007, 27(14): 5214-5224.
[70]   KARIM S, DAN L, HOLMSTRÖM K O, MANDAL A, PIRHONEN M. Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. Journal of Molecular Modeling, 2005, 11(3): 226-236.
[71]   DATTA S, HETTIARACHCHI C, JOHANSSON H, HOLM M. SALT TOLERANCE HOMOLOG2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. The Plant Cell, 2007, 19(10): 3242-3255.
[72]   WANG X H, LI Q T, CHEN H W, ZHANG W K, MA B, CHEN S Y, ZHANG J S. Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis. BMC Plant Biology, 2014, 14(1): 1-14.
[73]   KIM Y O, PAN S, JUNG C H, KANG H. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant and Cell Physiology, 2007, 48(8): 1170-1181.
[74]   HILL C B, JHA D, BACIC A, TESTER M, ROESSNER U. Characterization of ion contents and metabolic responses to salt stress of different Arabidopsis AtHKT1;1 genotypes and their parental strains. Molecular Plant, 2013, 6(2): 350-368.
[75]   ZHANG B, LIU K, ZHENG Y, WANG Y, WANG J, LIAO H. Disruption of AtWNK8 enhances tolerance of Arabidopsis to salt and osmotic stresses via modulating proline content and activities of catalase and peroxidase. International Journal of Molecular Sciences, 2013, 14(4): 7032-7047.
[76]   TULIN A, MCCLERKLIN S, HUANG Y, DIXIT R. Single-molecule analysis of the microtubule cross-linking protein MAP65-1 reveals a molecular mechanism for contact-angle-dependent microtubule bundling. Biophysical Journal, 2012, 102(4): 802-809.
[77]   GAO X, REN F, LU Y T. The Arabidopsis mutant stg1 identifies a function for TBP-associated factor 10 in plant osmotic stress adaptation. Plant and Cell Physiology, 2006, 47(9): 1285-1294.
[78]   TRIPATHI V, PARASURAMAN B, LAXMI A, CHATTOPADHYAY  D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. The Plant Journal, 2009, 58(5): 778-790.
[79]   Deinlein U, Stephan A B, Horie T, Luo W, Xu G, Schroeder J I. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19: 371-379.
[80]   Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014(1): 1-18.
[81]   Bassil E, Ohto M A, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. The Plant Cell, 2011, 23: 224-239.
[82]   Yang O, Popova O V, Süthoff U, Lüking I, Dietz K J, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 2009, 436: 45-55.
[83]   Kumagai T, Ito S, Nakamichi N, Niwa Y, Murakami M, Yamashino T, Mizuno T. The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana. Agricultural and Biological Chemistry, 2008, 72(6): 1539-1549.
[84]   Lippuner V, Cyert M S, Gasser C S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. The Journal of Biological Chemistry, 1996, 271: 12859-12866.
[85]   Nagaoka S, Takano T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. Journal of Experimental Botany, 2003, 54: 2231-2237.
[86]   Paterson A H, Bowers J E, Bruggmann R, DUBCHAK I, GRIMWOOD J, GUNDLACH H, HABERER G, HELLSTEN U, MITROS T, POLIAKOV A, SCHMUTZ J, SPANNAGL M, TANG H, WANG X, WICKER T, BHARTI A K, CHAPMAN J, FELTUS F A, GOWIK U, GRIGORIEV I V, LYONS E, MAHER C A, MARTIS M, NARECHANIA A, OTILLAR R P, PENNING B W, SALAMOV A A, WANG Y, ZHANG L, CARPITA N C, FREELING M, GINGLE A R, HASH C T,KELLER B, KLEIN P,KRESOVICH S, MCCANN M C, MING R, PETERSON D G, MEHBOOB-UR-RAHMAN ,WARE D, WESTHOFF P, MAYER K F, MESSING J, ROKHSAR D S. The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457: 551-556.
[1] PANG HongBo, CHENG Lu, YU MingLan, CHEN Qiang, LI YueYing, WU LongKun, WANG Ze, PAN XiaoWu, ZHENG XiaoMing. Genome-Wide Association Study of Cold Tolerance at the Germination Stage of Rice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4091-4103.
[2] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[3] ZHANG PengXia,ZHOU XiuWen,LIANG Xue,GUO Ying,ZHAO Yan,LI SiShen,KONG FanMei. Genome-Wide Association Analysis for Yield and Nitrogen Efficiency Related Traits of Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2021, 54(21): 4487-4499.
[4] ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers [J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
[5] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[6] XiaoShuai HAO,MengMeng FU,ZaiDong LIU,JianBo HE,YanPing WANG,HaiXiang REN,DeLiang WANG,XingYong YANG,YanXi CHENG,WeiGuang DU,JunYi GAI. Genome-Wide QTL-Allele Dissection of 100-Seed Weight in the Northeast China Soybean Germplasm Population [J]. Scientia Agricultura Sinica, 2020, 53(9): 1717-1729.
[7] ZHOU QingYuan, WANG Qian, YE Sang, CUI MinSheng, LEI Wei, GAO HuanHuan, ZHAO YuFeng, XU XinFu, TANG ZhangLin, LI JiaNa, CUI Cui. Genome-Wide Association Analysis of Tribenuron-Methyl Tolerance Related Traits in Brassica napus L. Under Germination [J]. Scientia Agricultura Sinica, 2019, 52(3): 399-413.
[8] REN YiYing, CUI Cui, WANG Qian, TANG ZhangLin, XU XinFu, LIN Na, YIN JiaMing, LI JiaNa, ZHOU QingYuan. Genome-Wide Association Analysis of Silique Density on Racemes and Its Component Traits in Brassica napus L. [J]. Scientia Agricultura Sinica, 2018, 51(6): 1020-1033.
[9] TIAN ZhiTao, ZHAO YongGuo, LENKA Havlickova, HE Zhesi, ANDREA L Harper, IAN Bancroft, ZOU XiLing, ZHANG XueKun, LU GuangYuan. Dynamic and Associative Transcriptomic Analysis of Glucosinolate Content in Seeds and Silique Walls of Brassica napus [J]. Scientia Agricultura Sinica, 2018, 51(4): 635-651.
[10] CHEN XuePing, LIU ShiYao, YIN NengWen, JING LingYun, WEI LiJuan, LIN Na, XIAO Yang, XU XinFu, LI JiaNa, LIU LieZhao. Construction of a Near Infrared Model for Detecting Stem Fiber Component Content and Lignin Monomer G/S in Rapeseed [J]. Scientia Agricultura Sinica, 2018, 51(4): 688-696.
[11] ZHANG YaoFeng, ZHANG DongQing, YU HuaSheng, LIN BaoGang, HUA ShuiJin, DING HouDong, FU Ying. Location and Mapping of the Determinate Growth Habit of Brassica napus by Bulked Segregant Analysis (BSA) Using Whole Genome Re-Sequencing [J]. Scientia Agricultura Sinica, 2018, 51(16): 3029-3039.
[12] YAN Jing, WANG XiaoLei, ZHANG YuChi, ZHANG QingLing, WANG Jian, QIANG Sheng, SONG XiaoLing . Fitness of Herbicide-Resistant BC3F4 between two herbicide-resistant transgenic Brassica napus and wild Brassica juncea [J]. Scientia Agricultura Sinica, 2018, 51(1): 105-118.
[13] WEI DaYong, TAN ChuanDong, CUI YiXin, WU DaoMing, LI JiaNa, MEI JiaQin, QIANWei. Genome-Wide Association Study of the Fertility Restorer Loci for pol CMS in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2017, 50(5): 802-810.
[14] WANG Xiao, ZHANG Qin, YU Ying. Genome-Wide Association Study on Mastitis Resistance Based on Somatic Cell Scores in Chinese Holstein Cows [J]. Scientia Agricultura Sinica, 2017, 50(4): 755-763.
[15] ZHOU QingHong, ZHOU Can, ZHENG Wei, FU DongHui. Genome Wide Association Analysis of Silique Length in Brassica napus L. [J]. Scientia Agricultura Sinica, 2017, 50(2): 228-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!