Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (4): 775-783.doi: 10.3864/j.issn.0578-1752.2016.04.016

• RESEARCH NOTES • Previous Articles     Next Articles

Expression and Interaction Between ROH1 and EXO70A1 in Reproductive Development

ZHANG He-cui1, LIU Jing1, LIAN Xiao-ping2, ZENG Jing1, YANG Kun1, ZHANG Xue-jie3, YANG Dan1, SHI Song-mei1, GAO Qi-guo2, ZHU Li-quan1   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400716
    2Key Laboratory in Olericulture of Chongqing, Southwest University, Chongqing 400716
    3 Chongqing Tobacco Company Qianjing District Branch, Chongqing 409000
  • Received:2015-09-10 Online:2016-02-16 Published:2016-02-16

Abstract: 【Objective】The objectives of this study were to clone ROH1 and EXO70A1 from the Brassica oleracea bloom, and establish whether EXO70A1 and ROH1 are involved in the reproductive development of Brassica oleracea. 【Method】The coding sequences of ROH1 were cloned by PCR from Brassica oleracea. In addition, the coding sequences of EXO70A1 was cloned from Brassica oleracea mRNA. RT-PCR was used to analyze expression characteristics of ROH1, while Real Time PCR was used to analyze expression of ROH1 and EXO70A1 in 1 hour post-pollination. A Yeast Two-hybrid System was used to determine the interaction between ROH1 and EXO70A1.The encoding sequences of ROH1 was subcloned into vector pGADT7 and Exo70A1 was subcloned into vector pGBKT7. Then the interaction between ROH1 and EXO70A1 was tested in selection medium by yeast two-hybrid System.【Result】We demonstrated that the ROH1 gene is a single-exon gene encoding a 398-amino-acid protein in Brassica oleracea. With the ROH1 in Arabidopsis, the sequence losses 16 amino acid residues in Brassica oleracea, In addition, ROH1 expressed in stems, styles, anther, young roots and leaves. Notably, expression levels varied in different tissues, with strong expression in styles, anthers and leaves, but with weak expression in stems and roots. After pollination, the expression of ROH1 gene increased between 0-15 min, decreased from 15 min, and peaked at 1 hour post-pollination The expression of EXO70A1 gene tracked ROH expression pattern. The changes in expression of EXO70A1 and ROH1 implied that they were involved in reproductive development. The expression of ROH1 and EXO70A1 appeared in overlapping region at 30 min. This overlap suggested that a potential interaction between ROH1 and EXO70A1 in Brassica olerace. The recombinant expression vectors did not exhibit autoactivation and toxicity. Yeast Two-hybrid system experiments established that the recombinant expression vectors could grow well on nutritional media without transcription activation of the reporter genes AUR1-C, MEL1, HIS3 and ADE2, and it showed an interaction between ROH1 and EXO70A1 in Brassica oleracea.【Conclusion】The strong interaction between ROH1 was detected during reproductive development in Brassica oleracea. It is speculated that ROH1 and EXO70A1 affects the reproductive development by regulating the secretion of the stigma EXO70A1, putting forward a novel insight into the reproductive development process in Brassica oleracea system.

Key words: Brassica oleracea, ROH1, EXO70A1, yeast two-hybrid system

[1]    ?árský V, Kulich I, Fendrych M, Pe?enková T. Exocyst complexes multiple functions in plant cells secretory pathways. Plant Biology, 2013, 16: 726-733.
[2]    Gromley A, Yeaman C, Rosa J, Redick S, Chen C T, Mirabelle S, Guha M, Sillibourne J, Doxsey S J. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory- vesicle-mediated abscission. Cell,2005, 123: 75-87.
[3]    Kulich I, Pe?enková T, Sekereš J, Smetana O, Fendrych M, Foissner I, H?ftberger M, ?árský V. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic, 2013, 14(11): 1155-1165.
[4]    Munson M, Novick P. The exocyst defrocked, a framework of rods revealed. Nature Structural & Molecular Biology, 2006, 13: 577-581.
[5]    TerBush D R., Maurice T, Roth D, Novick P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO Journal, 1996, 15: 6483-6494.
[6]    Li S, van Os G M, Ren S, Yu D, Ketelaar T, Emons A M, Liu C M. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiology, 2010, 154(4): 1819-1830.
[7]    Safavian D, Jamshed M, Sankaranarayanan S, Indriolo E, Samuel M A, Goring D R. High humidity partially rescues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. Plant Reproduction, 2014, 27(3): 121-127.
[8]    杨昆, 张毅, 吕俊, 赵永斌, 张贺翠, 韩叙, 何光华. EXO70在拟南芥和水稻基因组中的倍增. 科学通报, 2015, 60(1): 38-51.
Yang K, Zhang Y, Lü J, Zhao Y B, Zhang H C, Han X, He G H, Comparison of EXO70 duplication between Arabidopsis thaliana and Oryza sativa. Chinese Science Bulletin, 2015, 60: 38-51. (in Chinese)
[9]    Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V. The exocyst complex in plants. Cell Biology International, 2003, 27: 199-201.  
[10]   Hála M, Cole R, Synek L, Drdova E, Pecenkova T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler J E, Zarsky V. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. The Plant Cell, 2008, 20(5): 1330-1345.
[11]   Safavian D, Goring D R. Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae. PLoS ONE, 2013, 8: e84286.
[12]   Synek L, Schlager N, Elias M, Quentin M, Hauser M T, Zarsky V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. The Plant Journal,2006, 48(1): 54-72.
[13]   Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. The Plant Cell, 2009, 21(9): 2655-2671.
[14]   杨昆, 张贺翠, Richard Convers, 朱利泉, 杨永军, 薛丽琰, 罗兵, 常登龙, 高启国, 王小佳. 甘蓝自交不亲和信号转导元件ARC1与EXO70A1的相互作用. 作物学报, 2011, 37(12): 2136-2144.
Yang K, Zhang H C, Converse R, Zhu L Q, Yang Y J, Xue L Y, Luo B, Chang D L, Gao Q G, Wang X J. Interaction between two self- incompatible signal elements, EXO70A1 and ARC1. Acta Agronomy Sinica, 2011, 37(12): 2136-2144. (in Chinese)
[15]   Kulich I, Cole R, Drdova E, Cvrckova F, Soukup A, Fowler J, ?árský V. Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytologist, 2010, 188: 618-625.
[16]   Zhang Y, Liu C M, Emons A C, Ketelaar T. The plant exocyst. Journal of Integrative Plant Biology, 2010, 52(2): 138-146.
[17]   Kang Y M, Kim R N, Cho H S, Kim W T, Choi D, Pai H S. Sliencing of a baypassl homologs results in root-independent plejotmhpjc developmental defects in Nicotiana benthaminaa. Plant Molecular Biology, 2008, 68(4/5): 423-437.
[18]   Van Norman J M, Frederick R L, Sieburth L E. BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Current Biology, 2004, 14: 1739-1746.
[19]   Lee D K, Van Norman J M, Murphy C, Adhikari E, Reed J W, Sieburth L E. In the absence of BYPASSl-related gene function, the bps signal disrupts embryogenesis by an auxin-independent mechanism. Development,2012, 139(4): 805-815.
[20]   刘豫东, 高启国, 曾静, 张林成, 朱利泉, 任雪松, 王小佳. 甘蓝BYPASSl编码基因的克隆与表达分析. 中国蔬菜, 2013, 16: 22-28.
Liu Y D, Gao Q G, Zeng J, Zhang L C, Zhu L Q, Ren X S, Wang X J. Encoding gene cloning and expression analysis of BYPASS1 in Brassica oleracea L..China Vegetables, 2013, 16: 22-28. (in Chinese)
[21]   张贺翠, 廉小平, 柳菁, 李帮秀, 周燕. 三种芸薹属植物ROH1基因的克隆及分析. 安徽农业科学, 2015, 43(3): 18-21.
Zhang H C, Lian X P, Liu J, Li B X, Zhou Y. Cloning and analysis of ROH1 from three Brassica plants,Journal of Anhui Agricultrual Science, 2015, 43(3): 18-21. (in Chinese)
[22]   陶珍珍, 李中安, 贾敏, 唐萌, 唐科志, 周常勇, 周彦. T3基因型柑橘衰退病毒实时荧光定量RT-PCR检测体系的建立及应用. 园艺学报, 2015, 42(1): 183-190.
Tao Z Z, Li Z A, Jia M, Tang M, Tang K Z, Zhou C Y, Zhou Y. Development and application of a quantitative RT-PCR approach for quantification of T3 genotype of citrus tristeza virus. Acta Horticulturae Sinica, 2015, 42(1): 183-190. (in Chinese)
[23]   Zonia L, Munnik T. Uncovering hidden treasures in pollen tube growth mechanics. Trends in Plant Science, 2009, 14: 318-327.
[24]   杨昆, 周永祥, 张贺翠, 赵永斌, 杨永军, 陆俊杏, 朱利泉, 薛丽琰, 吕俊, 高启国. 甘蓝、大白菜和甘蓝型油菜 EXO70A1 基因的克隆与表达特性. 作物学报, 2012, 38(4): 578-588.
Yang K, Zhou Y X, Zhang H C, Zhao Y B, Yang Y J, Lu J X, Zhu L Q, Xue L Y, LüJ, Gao Q G. Cloning and expression characteristics of EXO70A1 from Brassica oleracea,Brassica campestris, and Brassica napus. Acta Agronomica Sinica,2012, 38(4): 578-588.
[25]   郝建华, 沈宗根. 细胞壁在植物生殖生长中的作用. 生物学杂志, 2003, 20(4): 4-6.
Hao J H, Shen Z G. Some effects of cell wall in plant reproduction. Journal of Biology, 2003, 20(4): 4-6. (in Chinese)
[26]   Zhang Q, Cao J, Liu H, Huang L, Xiang X, Yu X. Characterization and functional analysis of a novel PCP gene BcMF5 from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Journal of Plant, 2008, 165(4): 445-455.
[27]   Blackmore S, Wortley A H, Skvarla J J, Rowley J R. Pollen wall development in flowering plants. New Phytologist, 2007, 174(3): 483-498.
[28]   Huang L, Cao J, Ye W, Liu T, Jiang L, Ye Y. Transcriptional differences between the male-sterile mutant bcms and wild-type Brassica campestris ssp. chinensis reveal genes related to pollen development. Plant Biology, 2008, 10(3): 342-355.
[1] ZHANG HuiYuan,LIU YongWei,YANG JunFeng,ZHANG ShuangXi,YU TaiFei,CHEN Jun,CHEN Ming,ZHOU YongBin,MA YouZhi,XU ZhaoShi,FU JinDong. Identification and Analysis of Salt Tolerance of Wheat Transcription Factor TaWRKY33 Protein [J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602.
[2] TAO XingLin, HOU Dong, ZHU HuiXia, LIU MingXia, ZHANG JinWen, HU LiMin. Transcriptome and Cytological Researches on the Anther Abortion of a Thermo-Sensitive Genic Male Sterile Line GS-19 in Cauliflower [J]. Scientia Agricultura Sinica, 2017, 50(13): 2538-2552.
[3] SHI Song-mei, GAO Qi-guo, LIAN Xiao-ping, BI Yun-long, LIU Xiao-huan, PU Quan-ming, LIU Gui-xi, LIU Jing, REN Xue-song, YANG Xiao-hong, ZHU Li-quan, WANG Xiao-jia. Identification of Interaction Domain of SRK-ARC1-Exo70A1 and Interaction Strength Analysis in Brassica oleracea var. capitata L. [J]. Scientia Agricultura Sinica, 2016, 49(1): 14-26.
[4] LIU Yao, DING Yi-juan,WANG Lei,WAN Hua-fang,MEI Jia-qin, QIAN Wei. Crossability Between Brassica napus with Hexaploid AnAnCnCnCoCo and Sclerotinia Resistance in the Hybrids [J]. Scientia Agricultura Sinica, 2015, 48(24): 4885-4891.
[5] SUN Guang-hua, YUAN Huan-huan, FAN Xiao-cong, GU Hai-ke, SONG Mei-fang, XIAO Yang, MENG Fan-hua, GUO Lin, YANG Qing-hua, ZHAN Ke-hui, YANGJian-ping. Molecular Cloning and Arabidopsis Ectopic Expression of a Phytochrome B gene from Brassica oleracea [J]. Scientia Agricultura Sinica, 2015, 48(22): 4417-4427.
[6] HE Yi-kun, ZHONG Min, HU Tong-le, WANG Shu-tong, DUAN Hao, DING Li, WANG Ya-nan, CAO Ke-qiang. Screening of the Host Factors Interacting with CP of Apple chlorotic leaf spot virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2014, 47(24): 4821-4829.
[7] YU Tai-Fei-1, 2 , XU Zhao-Shi-2, LI Pan-Song-2, CHEN Ming-2, LI Lian-Cheng-2, ZHANG Jun-Hua-1, MA You-Zhi-2. Screening and Identification of Proteins Interacting with TaMAPK2 in Wheat [J]. Scientia Agricultura Sinica, 2014, 47(13): 2494-2503.
[8] LOU Wang-Huai, AN Juan, SONG Ai-Ping, CHEN Su-Mei, JIANG Jia-Fu, CHEN Fa-Di, FANG Wei-Min, GUAN Zhi-Yong. Cloning and Expression Analysis of Eukaryotic Translation Initiation Factor 4E Gene and Screening of the Interactive Protein from Chrysanthemum×morifolium [J]. Scientia Agricultura Sinica, 2013, 46(9): 1881-1891.
[9] ZHANG Yue-Juan, ZHAO Ting-Chang, YANG Yu-Wen. Screening of the Interactive Proteins of Avirulent Proteins AvrPto or AvrPtoB in Susceptible Tomato Cultivar Zhongshusihao by Yeast Two-Hybrid System  [J]. Scientia Agricultura Sinica, 2011, 44(23): 4939-4944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!